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O Introduction: Modelling Nitrogen Dynamics in Soil-Plant
Systems

0.1 Historical Background

The development of numerical models describing plant dnpwiater flow and turnover
of nutrients in soil-plant systems starts in the late 19@&su(nan et al., 1996), since then
the availabe computer power allowed to simulate plant dgidveised on processes such as
photosynthesis (de Wit, 1965) or solute transport in saittuiding the processes of convec-
tion and diffusion (Frissel et al., 1970; Wierenga and de, \M70; van Genuchten et al.,
1974). However, more complex models of the soil-plant systeame up only after per-
sonal computers had become more and more common at the emgl Bd70s and during
the 1980s.

After also models to calculate the turnover of soil carboh 46d nitrogen (N) had been
developed in the 1970s (Dutt et al., 1972; Beek and Fris8&3;1Mehran and Tanji, 1974;
Tanji and Gupta, 1978), at the beginning of the 1980s therfixdels result that combine
plant growth with soil water flow, N transport and/or soil GidaN-turnover (Watts and
Hanks, 1978; Seligman and van Keulen, 1981). Until mid ofta80s several models are
developed that include approaches still used nowadayssasfbathe simulation of agricul-
tural and forest systems such as CENTURY (Parton et al.,)1984SOIL (Molina et al.,
1983), EPIC (Williams and Renard, 1985), CERES (Jones anithyKil986; Ritchie et al.,
1987), LEACHM (Hutson and Wagenet, 1992), SOILN (Johnsda@h £1987) and ANIMO
(Berghuijs-van Dijk et al., 1985). Whereas these older risodere revised, from the end of
the 1980s until the mid of the 1990s several new models drégeatdress the increased re-
quest for different applications mainly in the field of agitairal production (Shaffer et al.,
2001) with focus on the soil N-transport and N-turnover. HHEES (Kersebaum, 1989),
DAISY (Hansen et al., 1990), NLEAP (Shaffer et al., 1991) NEMAL (Smith et al., 1996),
GLEAMS (Leonard et al., 1987), N-SIM (Engel, 1991a)x#E=RTN (Engel and Priesack,
1993), DNDC (Li et al., 1992), CANDY (Franko et al., 1995), WA (Vanclooster et al.,
1995).

Based on extensive experimental datasets several modgacizons were accomplished
(de Willigen, 1991; Diekkruger et al., 1995; Tiktak and va@ninsven, 1995). Based on
the comparison of simulated with experimental results artipular comparing time series
of crop biomasses and contents of soil water and soil minéraeneral model deficits
could be identified, that both concerned all models and oetyat models or modelling
approaches. However, because of the high model complaxitgs in general difficult or
even not possible to exactly specify the cause of a certainlation inaccuracy or mod-
elling error. Often also the resolution in time or space eféxperimental data is not high
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enough to identify model wrongness (Diekkriiger et al., 5099 herefore, among the mod-
els that delivered adequate simulation results were venplsi, more empirical models
as well as more complex, physically based models (de WAllig®91; Diekkriiger et al.,
1995). An integrative documentation of 23 N-models (Endedle 1993) which served
as a basis for the development ock#B=RT-N gives a survey on the state of model devel-
opment for application to agricultural crop systems at begfithe 1990s. A more recent
survey can be found in Shaffer et al. (2001), where inforamatin numerous models from
Europe, Canada and USA is provided and additionally diffeneodel applications are pre-
sented, see also Priesack et al. (2001) for areERTN application therein. In the field
of modelling turnover of soil organic substances nine meuaire evaluated using datasets
from seven long-time experiments to compare their pregfictiapabilities (Smith et al.,
1997). A further comparison of models that describe traceagaissions from soils, in
particular NO-emissions under agricultural management, showed prabénd deficits in
establishing an accurate emission prognosis which is getxdetermine regional trace
gas inventories (Frolking et al., 1998). This model congmariof the four different models
CASA-NCASA, DAYCENT, DNDC and KPERTN used datasets on soil water and nitro-
gen contents and JD-emissions at four different sites: a dry shortgrass stépolorado
USA, afertilized ryegrass ley cut for silage in Scotland awal cultivated fields in Germany
of the FAM Research Network on Agroecosystems (Schrodak,&2002).

Until the end of the 1980s often simulation and prognosiseviecused to determine the
change in soil mineral N contents between harvest of the oramin autumn and sowing
of the following main crop in spring, in particular, it wasethim to quantify the amount of
nitrate N leached during the winter period in order to cdiyesize the amount of the first
N fertilizer application for the newly growing crop (Eng&R91b).

During the 1990s N model application was extended to desdhib dynamics of soil N
pools for the whole vegetation period. This was undertakainiy to study the impact of
different management systems such as different crop oostir growth of catch crops on
soil N dynamics, but also to analyse changes in soil orgamittenand to quantify trace gas
emissions (C@, N,O, NO) from soils.

Since the end of the 1990s questions about the robustnessdul parameterisation are
increasingly studied in water flow and solute transport mimde(Schulz et al., 1999), in
particular to deal with the observed soil variability (Huge al., 2004). Furthermore, N
models were extended to describe the impact of preferdtdialon nitrate leaching (Lars-
son and Jarvis, 1999). Facing the change in climatic canditalso questions about the
impact of changing precipitation patterns (temporal digtion of occurrence, change of
amounts and intensities), changing temperature regimg<laanging atmospheric GO
and Q-concentrations are addressed and soil-plant-atmosgiyetem models are applied



0.2 Model Development and Modularity 3

for prognosis and scenario studies (Grant et al., 2004).

Moreover, the applied model itself is increasingly objdamalysis ranging from the verifi-
cation of the program code to the intensive testing of theptete model using experimental
data. Where as the code verification also has to deal withtiqnesabout the correctness
and effectiveness of the numerical methods that are apolisalve the model equations, the
analysis of the complete model also needs to inspect the eaglifferent model parts are
coupled using adequate experimental data sets. Startthghvei analysis of single process
models and sub-models without considering the mutual digreries within the complete
model, step by step the different couplings and feed-bampddetween the different model
parts have to be tested. Therefore, highly modular cortstiumodels and model systems
such as EPERT-N are necessary to allow a more thorough model testing aciéatsically
based model application, which can also help to assesstaimt&rs and systematic errors
of a process description due to a comparison of differertrsablels each representing the
same process model as part of the whole model.

0.2 Model Development and Modularity

In the scientific literature the term model is used in difféarevays. Often under the term
model an executable computer program is understood thasiscbon a mathematical for-
mulation of logical rules and equations and can describemesent a natural system in a
simplified form as part of the reality using input data andapaeter values (Refsgaard and
Henriksen, 2004). In this sense already the evaluationiokai regression equation can be
seen as a model application that describes a set of expddahtza representing a certain
part of a natural system. In the following we will understasda model a finite system of
eqguations and algorithms that represents a dynamicalmsyd#scribing certain aspects of
the development of a natural process. However, a dynamjstérs is not only defined in
the strict sense by a system of partial and ordinary difféskequations but in a wider sense
by a finite series of differential equation systems augntebtea finite set of algorithmic
rules. Models that are defined in this way are considered &smimistic or mechanistic
models (Addiscott and Wagenet, 1985).

The series of equations and algorithms defining the modebealuild up in a way that
single components as given by certain sub-series descriiegke natural process, e.g.
transport of a chemical or growth of a plant organ. This congmbd-wise composition of
the model system based on models describing single pracds$@es the modularity of
the model, since the single process models can be considsreldmentary modules from
which sub-models, e.g. the water flow model or the crop gramakel, and finally the total
model can be constructed.

This modularity of the model allows a thorough model systeralysis starting with the
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validation of the of the single process model and ending bycttmparison of simulation
results with experimental data to test the mutual couplimiggrocesses and related feed
back loops that determine the total model. Furthermore ginoddularity facilitates model
extension, since the model can be easily expanded by addlittgef components and the
model can be designed as an open model, which allows thegmuging user to insert his
self-defined and self-programmed sub-models. Such an apemadular model concept
was realized by the development of the model systetER TN, resulting in one of the first
soil-plant system models with an open and modular modelitacthre (Abrahamsen and
Hansen, 2000). Because of consequently implementing aledifierent sub-models that
describe the same single process given by different sailtgystem models such as CERES
or LEACHM, from the beginning of the PERT-N model development, attention had to
be paid to the exchangeability of single process modelsisRdthe model development
was a documentation and review of known models and modelipgoaches (Engel et al.,
1993) that lead to the model structure and the partitioning modular model groups of
water flow, heat transfer, solute transport, plant growtth agricultural management and
their further division into single process components.



1 Soil Water: Storage and Seepage

1.1 Introduction

The availability of water is one of the prerequisites for éxéstence of life on earth. Liv-
ing organisms consist at a major part of water (plants anahalsiat a fraction of 50-95%)
and most physiological processes are closely related tavéter phase. At dry land wa-
ter shortage threatens the living functions of terrestirglanisms within short time, since
life cannot exist under dry conditions without regular watptake to compensate the water
losses necessary for cooling. Furthermore, water is nebgedrrestrial life not only to
build up biomass by assimilation of GCbut also to decompose organic substances which
happens mainly by micro-organisms in an aqueous envirotimi@os, plant canopies con-
sume huge amounts of water (depending on climatic conditimtween 10 to 108: per
hectare and day). Communities of living organisms in lakes @évers, soils and ground
water rely on water from which they take up nutrients and gynér form of dissolved or-
ganic substances. Therefore, water is also of high impeetéor the bio-chemical cycling
of carbon, nitrogen and other nutrients.

For the hydrological cycle soil is an important water stera@epending on the soil type
one cubic meter of soil contains between 10 to 400 liters déw&oil type and soil water
capacity also determine if the rain water either runs awasr tlve soil surface (run off)
and reaches the discharge system as a shock wave possiliputimg to the formation

of floods, or if the rain infiltrates into the soil (infiltrati) leading to a more steady soil
water flow (seepage) and a regular water supply of plants.itidddlly, the more steady
soil water flow serves as means of transport of solved chésniceluding plant nutrients

such as ammonium and nitrate. Below the root zone soil water disually reaches the
groundwater, which in turn feeds the steady water flow of wateirces and rivers. The
water taken up by the soil partly can return to the atmosphgrevaporation from the top
soil or by root water uptake and subsequent transpiratidorin of water vapor through
the stomata of plant surfaces. Under dry conditions in @algr during the summer when
precipitation is low and the water uptake by the plant canalpyost exhausts soil water,
then the soil hydraulic gradient can cause water flow fromtevetoil horizons below the
root zone or from groundwater towards the upper dry soili(leay rise).

Moreover, not only the soil but also the vegetation conttésrate and amount of run off
from the soil surface. Water storage at the plant surfaceagland after the precipitation
event (interception) reduces the amount of water that hisoil surface resulting in lower
run off and lower infiltration. Comparing different land usgstems such as forest, grass-
land and field, the forest system has an additional wateagodue to its mulch layer and
the mineral soil generally shows a higher number of mackgptinat enhance infiltration.
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Grassland has no mulch layer and less macropores in the ®uétefore, the infiltration
capacity of grassland soils is lower than that of most foseds, but it is generally higher
than that of crop field soils in which during strong precipda events a short time soll
surface sealing occurs caused by swelling of fine soil gagtim the top soil. In this case
barely any precipitation water infiltrates and a high runaaffurs.

The aim of soil hydrological modelling is to describe the ti@med processes of water flow
in the soil-plant-atmosphere system by mathematical maamsway that it is possible to
calculate the dynamics of water exchange between atmaspdwl and groundwater using
as input the data of

e climate and weather conditions as measured by a usual rokdgimal station,
e basic soil properties including soil bulk density and sexttire and
¢ land use management e.g. as provided by the farming records

To calculate the water fluxes between atmosphere and thelaotl system, we estimate
the possible water uptake by the atmosphere using the nogmal data and applying a
model of potential evapotranspiration. In the model sysExRreRT-N different evapotran-
spiration models are available that are often used for meltegical purposes (DVWK,
1996; VDI, 1993; Smith et al., 1992) such as the models of Ren(vDI), Penman-
Monteith (FAO) and Haude (VDI). These approaches can be dspdnding on available
meteorological input data. By coupling with the models of sater flow and crop growth
we can calculate the actual evaporation and actual traspirfrom the estimated potential
evapotranspiration.

To simulate one-dimensional vertical soil water flow maityp different approaches are
followed (Gilding, 1992; Engel et al., 1993), and either pawty model or a model based
on Darcy-Buckingham’s law using a numerical solution oftRids equation is applied. For
both approaches additional soil hydraulic parametersegded. For the capacity model we
need data on volumetric water contents at saturation, dtdegacity and at the permanent
wilting point of each soil horizon. They can be estimated lisarete pedotransfer func-
tion, e.g. according to Renger (1971), from basic soil patens including bulk density,
texture and organic carbon content. For the water flow caticul by Richards equation we
need the soil hydraulic functions, i.e. the retention cuamd the unsaturated conductivity
curve. These curves can be given by parametrisations eaprdiicg to van Genuchten
(1980) and Mualem (1976). If no measured values are availaldo in this case pedotrans-
fer functions might be applied to estimate the parameterssing basic soil properties and
pedotransfer functions, e.g. according to Campbell (1L9BaIs and Brakensiek (1985)
or Vereecken et al. (1989, 1990).
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Since under field conditions often preferential water flowriacropores is observed, we
additionally included the approach of Durner (1994) ikPERT-N to simulate water flow
in macropores. This preferential flow occurs only in a smalttion of the whole pore
volume and is fast compared to the water flow in the remainorgg

Furthermore, three models to consider water flow duringfseéizing conditions (Jansson
and Halldin, 1980; Flerchinger and Saxton, 1989; Hanseh,et300) have been included
into EXPERT-N to obtain an adequate description of soil freezing anavithg. This was
achieved by an appropriate model parametrisation and bypaong simulations of the
different models with observed data. The models were agpptiecombination with the
N2O-model to improve simulationsJD-emissions during freezing and thawing cycles.

1.2 Soil Water Balance

The daily field soil water balance, which describes the ddilgnge of water contedf W p
[mm d~1] stored in a field soil profilé® results from

a) the amount of wate9;,, p [mm d~1], exchanged per day at the soil surface between
the soil profile and the atmosphere,

b) the amount of wateQy.; p [mm d~1], flowing per day across the lower end of the
soil profile, e.g. which leaves or enters the soil profile fritva saturated zone,

c) the amount of watefp [mm d—!], extracted per day from the soil profile due to a
sink, e.g. by root water uptake:

AWp = Qiop,p — Qpot,p — SP (1)

AWp  daily change of water storage in the soil profile P [mmid

Qtop,p  daily amount of water exchanged across the upper end of tibepP [mm d™!]
Quvor,p  daily amount of water exchanged across the lower end of ifdeP [mm d~!]
Sp daily amount of water extracted from the profile P due to a fimk d—!]

The amount of water entering or leaving the soil profile carbakanced by quantifying
the particular processes determining the water movememt firecipitation to groundwater
recharge. The water flow ra®@,., p [mm d~1] across the soil surface results from the
daily precipitation rateP R [mm d~!] and irrigation rate R [mm d~!] diminished by: the
change rate of interception wat&f' [mm d—!] resting on the vegetation surface; the rate
of runoff along the soil surfac&O [mm d~—']; and the actual soil evaporation ras/
[mm d—1]:

Qtop,p = (PR+IR—1C — RO —EV) (2
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The water flow rate across the lower end of the soil profile ismieined by the drainage rate
DR [mm d~1] and by the rate of capillary ris€ R [mm d~'] from the deeper subsurface
region, e.g. from the saturated zone:

Quot,p = (DR — CR) ®3)

The water sink in the soil profile is given by the root waterakgt of the plants correspond-
ing to the actual transpiration rafeR [mm d—!]:

Sp=TR (4)

Adding together the water flow across the upper and the loaendbary of the soil profile
and considering the water sink, the following soil wateranak results:

AWp=(PR+IR—-I1C—-RO—-EV)—(DR—-CR)—-TR (5)
AW p daily change of soil water storage within the soil profil@pn d—!]
PR precipitationjmm d ] IR irrigation [mm d 1]
IC  interceptionmm d—!] RO runoff [mm d~]
EV  actual evaporatiofmm d—!] DR drainagemm d~1)

CR capillary rise[mm d 1] TR actual transpiratiofmm d—!]
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1.3 Potential Evapotranspiration
1.3.1 Potential Evapotranspiration from Pan Evaporation Data

1.3.1.1 Daily Potential Evapotranspiration The calculation of the potential evapora-
tion follows the method of Childs and Hanks (1975). It is luthea the weekly pan evapo-
ration ETI%@’“ [mm week~!] data, that quantify the total evaporation from an open water

surface during a week. By applying the crop pan fattdt | of the considered crop species,
the daily evapotranspiratioBT%“Y [mm d~'] can be obtained:

pot
day E T]%f’bek
E Tpot = ke 7d (6)

The empirical crop pan factdr. [1] relates the pan evaporation to the evapotranspiration of
a plant lysimeter, and can be obtained by placing the plairnigter next to the evaporation
pan. The pan evaporation rate is then compared with the treagpiration rate, calculated
from the water balance of the lysimeter. As example, the peopfactor for a grass canopy
during winter is given by:.=0.5 (Haude, 1954).

1.3.1.2 Evaporation and Transpiration The potential daily soil evaporatioRV,,,;”

[mm d~1] is calculated from the daily evapotranspiratiﬁiTIf&y [mm d~'] and a crop

specific soil cover fractiory,,;., [1], in order to determine the fraction of the soil surface
that is free of plants and plant residues:

BV = (1~ fye) BT (7)

pot pot
The potential daily transpiratidﬁRzgi’ [mm d~1] is obtained from the difference between
potential daily evapotranspiratioETd“y [mm d—'] and the sum of daily actual evaporation

pot
from soil EV%Y [mm d~'] and from interception wateE1%Y [mm d~'] stored on plant

act

surfaces:

d d d d d d d d
TRpggtJ - ETpoaty - Evac(;y - EIagty - fplCUETp(()Ity + (E‘/po?‘/y - EVac%y) - EIagty (8)

1.3.1.3 Distribution During a Day The amount of potential evapotranspiration during

the dayETIEO;” = 1.0d ET;O“ty is distributed over 12 hours starting at 0.3 day (07h12) and

ending at 0.8 day (19h12), where t denotes the time sincediieo a new day (0h00), in
fractions of the day:

ET ot

da . .
(1) = {ETp Yr sinf2n(t —0.3)]  if 0.3 <t<08 ©)
0 else
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The amount of potential evapotranspiratiﬁ}TpAt [mm] during the time intervalAt =
[t1;t2] C [0.0; 1.0] is then calculated by the integral

ETA = QET( dr = fay BT 10

p p T) T = fAt ( )

ot
t1 P

defining the distribution factofa [d] for the time intervalA¢ with 7=0.3:

Far = { 1{cos[2m max(0; 1 — 7)] — cos[2r min(3;to — 7)]} for AtN[r;T+ 4] #0 (11)
0.0 else
Similarly, the potential evaporatiorEV;)At [mm] and the potential transpiration
TR]?t [mm] for the time intervalAt are calculated from the daily potential evaporation

EV,Y, and daily potential transpiratidiR e, respectively:

EVA! = fa BV . TR = fay TRISY (12)

pot ‘pot

1.3.2 Potential Evapotranspiration - Penman (VDI) Method

1.3.2.1 Penman Equation If the potential evaporation (e.g. from pan evaporatiom)ca
not be calculated due to the absence of raw data, it can bmatetli using the Penman
equation (Penman, 1948). This estimation is based on atilcas of the energy balance
(for radiation energy and vaporation heat) and on aerodimeamsiderations (concerning
the dependence of evaporation from wind velocity). Climatput data, such as average
daily air temperaturd’ [°C], mean daily relative humidity/ [%], wind speedv [ms~!],
cumulative daily solar radiatio®,,; [MJ m~2 d~!] are required to estimate the daily po-
tential evapotranspiratioETﬁfty [mm d~1] for a grassy surface on a wet soil, or for an
open water surface.

ThePenman equatio(DVWK, 1996; VDI, 1993) is defined by:

BT = & — (Bn, — Bu)/L + ¢ 1 ST (es(T) = ea)  (13)
ETj(j‘ty daily potential evapotranspirati¢mm d—!]
A slope of the vapor pressure cuiigPa K 1)
5 psychrometric constant= 0.663 [hPa K ~!]
Rng net shortwave radiatiop/ J m =2 d—!]
Rn, net longwave radiatiom/.J m=2 d—!]
L latent heat of vaporatiofd/ J m =2 mm 1]

f(v) wind speed function of Daltofi(v) = 0.27 (1.0 + 0.864 v) [mm d~* hPa™!]
for the wind speed [m s~1] in 2 m height

es(T)  saturation vapor pressuflePa] depending on average daily air temperaturéd]

eq average daily vapor pressyiePa].
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1.3.2.2 Vapor Pressures The saturation vapor presswg7") [hPa] depends upon the
average daily air temperature[TC](Sonntag, 1994):

17.627T

T) = 6.11 _ o 0her
es(T) PG 1 T

) (14)

From this expression; the slope of the vapor pressure ariyePa K ~!] can be obtained:

A = [es(T +1.0) — es(T)]/(T +1.0 — T) (15)

The average daily vapor pressutg[hPa| is determined from the mean daily relative hu-
midity U [%] and from the saturation vapor pressut€l’) [hPa] by:

U

T05) &™) (16)

eq = (
1.3.2.3 Net Radiation Taking into account the albed®, [1], which gives the fraction
of the short wave radiation reflected by the soil and crop pasorface, the net short wave
radiation is obtained:

Rng=(1-0a4) R, a7
Rng net short wave radiatiop/ J m~=2 d—!]
@ reflection coefficient or albedo
overall average for water, = 0.05 and for vegetatiomx = 0.25 (VDI, 1993)
R, global solar radiatiofM J m =2 d~!]

The net longwave radiatiofen; [MJ m~2 d~1] is the effective reflection from the land
surface. It results from the difference between thermaktexh from soil and vegetation
and the reflected radiation from atmosphere and clouds.eltisnated by the equation of
Brunt (1932), see also (Penman, 1948):

Rny = eo (T +273.15)* (0.34 — 0.044 \/eg ) (0.1 + 0.9n/N) (18)
Rny net long wave radiatiomV/J m=2 d—!]
€ emissivity = 0.97 for water surfaces, = 1.0 for other surface
o Stefan-Boltzmann constant=4®~° [MJ m~2 K]
T average daily air temperatuf¥C]
ed average daily vapor pressurePa]

n/N daily relative sunshine fractign]
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1.3.2.4 Latent Heat of Vaporation To transform radiation energy into its equivalent
water evaporation, the latent heat of vaporatio\/.J m =2 mm~!] is used and is defined
as the energy needed to evaporatekly0n—2 water per day, i.e. the energy for the evap-
oration of 1.0mm d~!. L is determined depending on the average daily air temperatur
T [°C], see DVWK (1996):

L =25 — 24210737 (19)

1.3.2.5 Sunshine Duration The daily sunshine duration[h] can be estimated from the
measured daily solar radiatid®, [MJ m~2 d~1] as follows:

n/N = (Ry/Ra — A)/B (20)
n sunshine duratiofh]
N maximal possible sunshine duration of the dlaly
R, cumulative daily solar radiatiop/J m =2 d—!]
R, cumulative daily extraterrestrial radiatioh/ J m =2 d—!]
A B empirical constants depending on month and [dite

The cumulative daily extraterrestrial radiatié [M J m~2 d~!] and the maximal possible
sunshine duration of the day [h] can be calculated from the latituggGrade] (0° ... 90°)
and the number of the day in the yehf1] (1...365), using the solar declinatiorGrade]
and the sunset hour angle [Grade] (VDI, 1993):

R, = 37,5985 (0,01745 ws sing sind + cosp cosd sinws) (21)
ws = arccos(—tang tand) (22)
0 = arcsin(0,3978 sin(& — 77,369 + 1,916 sing)) (23)
€ = 0,9856J — 2,796 (24)
N = 17,6394 (0,01745 w,) (25)

If for a given location in Germany, the monthly values for #mapirical constantsl and B
are unavailable the values = 0,35 and B = 0, 55 can be then used for an approximation
of R, and N (DVWK, 1996). Otherwise, the use of daily sunshine duratiatan [h] is
recommended.
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1.3.2.6 Consideration of Different Crop Canopies Empirical crop coefficientg. [1]
are used to calculate the potential evapotranspiratiowiftarent agricultural crops or for
forest stands. This is achieved by obtaining the produdieféference potential evapotran-
spiration determined by the Penman formula and the crodiciestf for the crop species

being considered:
ET  — k, ETY (26)

pot,c pot

ET;ICj‘”f{C daily potential evapotranspiratidmm d—!] for the crop canopy

ET;O“ty daily potential evapotranspiratiomm d—'] acc. Penman

ke crop coefficient [1]

The crop coefficient accounts for the canopy height and tlileceger of the crop. For
instance, if the canopy does not cover the soil completbly,crop coefficienk,. may be
lesser than 1.0. If the crop evapotranspiration is simdahat of low grassk. is equal to
1.0. For a fully developed crog,. can increase up to 1.5 (DVWK, 1996):

Table 1: Crop Coefficients, [1] acc. DVWK (1996)

Mar Apr May Jun Jul Aug Sep Oct Nov/Fep
PA 100 100 105 1.10 1.10 1.05 1.05 1.00 1.00
WW | 090 095 115 135 130 100 -.- 0.65
WwB [ 095 100 130 140 135 -- 0.65
SB -- 075 130 140 130 -.-
Ry |08 090 120 130 125 0.95 -.- 0.65
OA -.- 0.70 110 140 1.35 0.95 -.- -.- -.-
SB -.- 050 075 110 130 125 1.10 0.85 -.-
PO -- 050 090 110 140 1.20 0.90 -.-
PA pasture WW  winter wheat WB winter barley SB  summer barley

RY rye OA oats SB  sugar beet PO potato
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1.3.3 Potential Evapotranspiration - Penman-Monteith (FAO) Method

1.3.3.1 Penman-Monteith Equation Based on the Penman equation for estimating the
potential evapotranspiration, Monteith (1965, 1981) ttgwed a more complex model,
which is now widely used for investigations of soil water floWo better account for plant
canopies, Monteith introduced two additional crop resistafactors: the aerodynamic re-
sistance-, [s m~!] dependent upon wind speed, height and structure of the gaaig the
crop canopy resistanee [s m~!] related to the stomatal resistance of the plant leaves and
reflecting the water supply of the canopy.

The Penman-Monteith equatids thus defined:

1 A(Rn = G) + pacales — €d)/ra

day
Flot = 1 A+ v (1 re/ra) &N
Eng‘;y daily potential evapotranspiratignm =2 s—!]
L* latent heat of vaporatiofd/ J kg~!]
(L*=2.45M J kg~! for an average air temperature of 20)
A slope of the vapor pressure curie’a K ~1|
Rn net radiation at the soil surfa¢e m =2 s~ 1]
G soil heat flux/k.J m=2 s71]
Pa atmospheric densitycg m 3]
Ca specific heat of moist ajkJ kg~ K 1] (=1.013)
es(T")  saturation vapour pressuffePa| depending on average daily air temperatuféd]
ed average daily vapour pressytePa] (at dew point temperature)
Ta aerodynamic resistaneg [s m~!]
Te crop canopy resistanee [s m ~!]
5 psychrometric constat Pa K ~1] (= 0.0665kPa K ~! at 100 kPa atmospheric pressure)

The Penman-Monteith equation has gained significance yndir to its use as the basis for
calculating the standard grass reference evapotrarispirdi1;). This standard is defined
as the'rate of evapotranspiration from a hypothetic crop with assamed crop height of
0.12m, a fixed canopy resistance of 70 s hrand an albedo of 0.23, closely resembling
the evapotranspiration from an extensive surface of greaaggof uniform height, actively
growing, completely shading the ground and not short of wé&enith et al., 1992; Allen
et al., 1998). This defines a uniquely determined specificetr the calculation of daily
and monthly values of this reference evapotranspiratiochasen meteorological stations
world wide in a uniform way. This quantitatively-defined esfnce evapotranspiration is
designed to replace only qualitative or unreliable metHodthe estimation of the potential
evapotranspiration (Smith et al., 1992; DVWK, 1996).
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1.3.3.2 Resistance Factors The crop canopy resistaneg[s m '] is estimated from the
average daily (24 hours) stomata resistance of a singlerjeaf00s m !, and from the
leaf area index [1] of the canopy:

_m
"¢ = 05 LAI (28)

Using the relationL. AT = 24 h. and the crop height, =0.12m for cut grass, a leaf area
index of LAT = 2.88 is obtained for the grass reference crop. This yields a canpmy
resistance of, = 70 s m~ L.

The aerodynamic resistanggis calculated according to Allen et al. (1989) by
m — d —d
in(Z=2) in(=2)

_ Zom Zoh
o = e (@9)

Ta aerodynamic resistan¢em 1|
zm  height of wind speed measurements above groufehjn
zh height of temperature and humidity measurements abovendrioum)
k von Karman constant = 0.41 [1]
v, wind speedm s~1] measured at height,, above ground
d zero plane displacement of wind profjle] (Monteith, 1981)
(d = 2 he = 0.08 m for crop heighth. = 0.12m)
Zom roughness parametpn] for momentum (Brutsaert, 1975)
(zom = 0.123 h. = 0.015 m for crop heighti. = 0.12m)
zon ~ roughness parametpn] for heat and water vapor (Brutsaert, 1975)
(zon, = 0.0123 h. = 0.0015 m for canopy height,. = 0.12m)

For a standardized height for wind speed, temperature amdlity at 2=2 m above ground,
and a standardized crop height of 0:42 the aerodynamic resistance can be estimated as

follows:

208
Tq = —— (30)
V2

Finally the modified psychrometric constant according t@(k&ith, 1965) is calculated:

v =L +7e/ra) = 7(1+0.34 v5) (31)

~* modified psychrometric constaiitPa K~
5 psychrometric constait Pa K 1]

Te crop canopy resistandge m ']

Ta aerodynamic resistan¢em 1]

vy wind velocity[m s~1] at 2m height
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1.3.3.3 Vapour Pressure Deficit and Slope of the Vapor PressiCurve The vapor
pressure deficic Pa], i. e. the difference, — e, between the saturation vapour pressure
[k Pa] and the vapour pressure at dew point temperatyiié Pa|, is obtained by the daily
minimal und maximal air temperaturé&$,;,, [°C] andT,,,. [°Cl:

1 17.27T
€s = 5 [ea(Tmin) + ea(Tmax) ]’ where ea(T) = 0.611 exp( %) (32)
(Tetens, 1930) and the mean relative humidity%)] of the day:
50 50
=U 33
“d /[ea(Tmin) + ea(Tmaa}) ( )
The slope of the vapor pressure curvgk Pa K ~!] results from Tetens (1930):
4098 e,
A= ———— 34
(237.3 + T)2 (34)

1.3.3.4 Aerodynamic Term of the Penman-Monteith Equation The second term, the
aerodynamic tergET ) .., [mm d—1], of the Penman-Monteith equation is given by:

pot
~ 86.4 pgca(es — eq)/rq

day
(ETyot Jaer = 7 AT (35)

(ET;ICf‘”ty)aer aerodynamic term of daily potential evapotranspirafiom d—!]
L volumetric latent heat of vaporisatioh/ J m =2 mm~=1], L = p,, L*

(L* = 2.45 M J kg~ at an average air temperature of D)
Pa atmospheric densitycg m 3]
Pw Water density= 1,0 kg dm 3
Ca specific heat of moist ajkJ kg—! K]
es — €4 vapor pressure deficfit Pa]
Ta aerodynamic resistaneg [s m~!]

slope of the vapor pressure curfke’a K 1]
~* modified psychrometric constajitPa K —!]
From an equation to calculate the specific heat of moist air

M, L* 103
Cqg = YV —— (36)
¢ M, pa

Ca specific heat of moist aj.J kg—! K]
¥ psychrometric constart Pa K 1]
My, /M, =0, 622 ratio of molecular weights of water vapor to dry air [1]
L* specific latent heat of vaporisatiohl/ J kg~

Da atmospheric pressufgPa)
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and from the ideal gas law

M, p, 103
Pa = “RT, (37)
Pa atmospheric densitjkg m 3]
P atmospheric pressufgPa)
R specific gas constant = 287 kg~ ' K 1]
T, virtual temperaturék]
[=1,01 ('+273) for the daily average air temperatdré
M, =28,94 1072 kg mol~* molar weight of dry air

the following aerodynamic term for the grass reference ewapspiration is obtained
(Smith et al., 1992):

0.622 3,486p Vg
ET - i 20Pa 26400 —2 (e, —
(ETpor")acr A+ 7 pa 1,00 (T +273) 208 (6~ €d)
~ 900
~ — 38
A+ (110300 T2 26 e (38)

(EToe)aer  aerodynamic term for the daily potential evapotransgirginm d—']

A slope of the vapor pressure curfke’a K ~!]

~* modified psychrometric constajitPa K ~!]

~ psychrometric constant = 0.066%a K —' at 100 kPa atmospheric pressure
Vo wind speedm s~!] at 2 m height

T daily average air temperatufeC]

es — €q vapor pressure deficjit Pa)

1.3.3.5 Radiation Term of the Penman-Monteith Equation The first term of the
Penman-Monteith is the radiation ter(ETIf&y)md [mm d~!]. For the grass reference

evapotranspiration it is given by

1A@BN-G) _ 0 A(Rn = G)

P Y) . 39
L A+~ A+ (1 + 0.34vg) (39)

(Engy)md =

(EToe)raa  radiation term for the daily potential evapotranspiratiomn d—']

L volumetric latent heat of vaporisatioh/ J m =2 mm~!], L = p,, L*
(L* = 2.45 M J kg~! at an average air temperature of°ZD)

A slope of the vapour pressure cufid’a K ]

Rn net radiation at the soil surfa¢g/.J m =2 d—!]
soil heat flux across the soil surfade .J m =2 d—!]

v modified psychrometric constajitPa K —!] with v = 0.0665k Pa K !

Vo wind speedm s~1] at 2m height
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Thereby, the net radiatioRn [M.J m~2 d~!] is given by the difference between the net
incoming shortwave radiatioRn [MJ m~2 d~1] and the net outgoing longwave radiation
Rn; [MJ m~2 d~'], where the net shortwave radiatidtn, can be calculated from the
measured daily cumulative solar radiatiBg [M J m~2 d~1], if the albeda,. of the canopy

is known (e.g.«;,=0.23 for grass):

Rn = Rns— Rn; = (1 —oy) Ry — Ry (40)

The net outgoing longwave radiatidin; [M.J m~2 d~'] is the difference between the
outgoing thermal radiation emitted by the vegetation aridisim the atmosphere and the
incoming thermal radiation emitted by the atmosphere amdd:tover to the earth surface:

Rny = f(eq — €s) o (T +273.15)* (41)

Rn; netoutgoing longwave radiatidd/.J m =2 d—!]

f cloud cover factor [1]

€a effective emissivity of the atmosphere [1]

€ys  emissivity by vegetation and soil [1]

o Stefan- Boltzmann constant = 4.9 10MJ m=2 K4 d~!
T daily average air temperature(]]

The net emissivity, — €, [1] can be estimated using the equation of Brunt (1932), lsee a
Jensen et al. (1990), from the vapor pressure at dew poieeture:; [kPa]:

€a — €s = (0.34 — 0.14 \/eq ) (42)

The cloud cover factof [1] can be determined from the relative sunshine fractian,the
ratio n/N between the duration of bright sunshine [h] anditha daylength [h]:

=09 % + 0.1 (43)

Summarizing, for the net longwave radiatiém,; [MJ m =2 d~1] results:

Rny = (0.9 % + 0.1)(0.34 — 014 \/eq) 0 5 (T + Thaa)
(44)
= 245107 (0.9 § + 0.1) (0.34 — 0.14 /eq) (Trps, + Tras)
Rn, net outgoing longwave radiatidn/J m =2 d 1]
n daily duration of bright sunshine [h]
N total day length [h]
ed atmospheric pressufgPa]
o Stefan-Boltzmann constant = 4.9 10MJ m=2 K~*d~!

Tmins Tmaz ~ Minimal and maximal air temperature of the dag)
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If no measured data on the sunshine duraticare available, it can be estimated from the
measured daily solar radiatid®, [M.J m~2 d~1] by:
n = N (Ry/R, — A)/B (45)
n sunshine duration [h]
N total daylength [h]
Ryy daily solar radiationM J m =2 d—1]
R,  extraterrestrial radiatiom\/ J m=2 d~!]

A, B constantsA = 0.25 and B = 0.5for an average climate (Smith et al., 1992),
or A =0,35andB = 0, 55 for the whole region of Germany (DVWK, 1996).

The extraterrestrial radiatioR, [M.J m~2 d~!] and the total daylengttv [h] of the day
can be estimated from geometrical considerations on thig¢igro®f the sun (Duffie and
Beckman, 1980) :

24 - 60
R, = Gse dy (ws sing sind + cos¢ cosd sinwy) (46)
0
24
N = —ws = 7.64ws (47)
T

R, extraterrestrial radiatiofM/ J m=2 d ]
Gs. solar constant =0.082W J m =2 min~!
d, relative distance Earth-Sun [1]
[dy =1+ 0.033 cos(Z&J) = 1+ 0.033 cos(0.0172J) ]
1) solar declination [rad]
[ 6 =0.409 sin(ZZ.J — 1.39) = 0.409 sin(0.0172J — 1.39) |
) latitude [rad]
Ws sunset hour angle [rad]
[ ws = arccos(— tan ¢ tand) |
number of the day in the year (1,...,365)
N total daylengthh)

<

1.3.3.6 Soil Heat Flux Estimation for the Grass Reference Epotranspiration For

the determination of the grass reference evapotrangpiratiso an estimation of the soil
heat fluxG [MJ m~2 d~'] is needed. According to Wright and Jensen (1972) this can be
done in an approximative way for an effective soil depth &B0m as follows:

G = 0.38 (Tdaw — Tdaym,l) (48)
G soil heat flux into the soilAM J m =2 d~1]
Taay.n average air temperature on the actual f&)

Taayn—1 average air temperature on the preceding|d&y
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1.3.3.7 Grass Reference Evapotranspiration (FAO) By summing up the aerodynamic
and the radiation term, i.e. equation (38) and equation, (@) Penman-Monteith equa-
tion for the standardized determination of the grass rafareevapotranspiration rate

(ET;;y) [mm d~!] results, which is independent from water supply and fronp camopy

state:

0.408 A (Rn— G) + v _900 va (eq — €q)

(BT’ Jo = A + v (140.34 1) (49)

(ET;f;y)o daily standard grass reference evapotranspiratiorjwated 1]
A slope of the vapor pressure cuie’a K 1]
Rn net radiation at the crop surfag®/ J m=2 d—!]

soil heat flux across the soil surfagel J m=2 d—1]

psychrometric constant = 0.066%q K —! at 100 kPa atm. pressure

v
T daily average air temperatuf¥C]
Vo wind speedm s~1] at 2 m height

es — €q vapour pressure defidit Pa|

1.3.3.8 Crop coefficients for different crops The grass reference evapotranspiration
(ETﬁ;y)o provides a standard to which evapotranspiration in diffeperiods of the year
and from other crops can be related. This relation is expteby crop coefficients which
basically are the ratios of the crop evapotranspiratiorhéreference evapotranspiration.
Consequently, the crop coefficient represents the intiegraf the major effects that distin-
guish the evapotranspiration of the crop from the referéAtlen, 2000). In the FAO-56
report (Allen et al., 1998) and in Allen (2000) the relatiartihe standard reference is used
to define an upper limit on the actual evaporation and actaaspiration from any cropped
surface. This upper limit corresponds to the potential etrapspiration from a wet soll
after complete wetting of the soil surface by precipitatisrirrigation. This potential evap-
otranspiration is determined by the maximal crop coeffici€n,, ... for the respective crop
depending on crop height, wind speed and relative humidity:

(BT )e = Kemar (ETpo)o (50)

pot pot

ET]DCIC‘,‘E’)C daily potential evapotranspiration rate of the cfopn d ]

(
(ET;I;‘ty )o daily potential grass reference evapotranspiration[rate d—!]

K¢ maz maximal crop coefficienf ]
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where

h
Kemar = maz({k+ [0.04(vg — 2) — 0.004(Upin, — 45)](5)‘13}, {K4+0.05}) (51)
. >
{12 forr>3d (52)
1.1 else

K¢ maz maximal crop coefficienf ]

K basal crop coefficierjt ]

Vo wind speedm s~'] in 2 m height
Unmin daily minimal relative air humidity%]
h average crop canopy height|

time distance between two precipitation or irrigation egeii

The daily minimal relative air humidity/,.;,, [%)] is estimated by the ratio of the atmo-
spheric pressures, (T)in)/eqa(Tmas) @t the minimal and the maximal air temperature of
the dayT,,.., [°C], respectivelyl,,q.. [°C):

17.27 Toin 17.27 Thnax
Upnin = 100 e T — 53
P T3 T Ty ) / P33+ T ) 9

The daily potential evaporatiorEV;jf,‘;y [mm d~'] and the daily potential transpiration

TRZif [mm d~'] are distributed by the use of the plant specific soil covetofag,;.,, [1]

and, by considering the daily actual evaporation of thedetgtion storagé |, ;jgty [mm d~1]
as follows:

E‘/pdo%y = m’in{(Kc,maz - Kc )7 (1 - fplcv)Kc,maa}} (ETpd;ty)O (54)
TRZg%’ = maz{Kep, fpicvKeman} (ET;(%y)O - Elggty (55)

To determine the basal crop coefficigit, [1] four different crop growth stage periods are
distinguished: the initial, the development, the midseamad the late season period. In
correspondence to leaf area index which increases regglgctitays constant in the first
three periods and decreases in the last, the basal cropcoeaffk ., [1] is constant during
the initial and midseason periods, increases in the der@apperiod and decreases in the
late season. Hence, for the first three periéds [1] is given by:

ch,ini for 0 <t <tip

t— ting
ch = ch,ini + (ch,mid - ch,ini) — for tini < T <Ttgew (56)
tdev — tini
ch,mid for tdev <i< tmid
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and for the late season peridd,,,;q < t < t.nq ) by:

ch
ch,ini
ch,mid
ch,end
t

Lini

tdev
tmid
tend

ch = ch,mid + (ch,end_ch,mid)

basal crop coefficierjt ]
basal crop coefficient during the initial perigid

basal crop coefficient during the midseason pefi¢d
basal crop coefficient during the late season pefipd

time [d]

end of the initial periodd)
end of the development peridd
end of the midseason peri¢d

end (and duration) of the total peri¢d

t— tmid
tend - tmid

(57)

Table 2: basal crop coefficients (Allen et al., 1998)

tini  tdev tmid Tend ch,ini ch,mid ch,end
PO | 30 65 115 145 0.15 1.10 0.65
SF| 25 60 105 130 0.15 1.10 0.25
SB | 45 120 200 230 0.15 1.15 0.90
WC | 30 170 210 240 0.15 1.10 0.15
SC|40 70 110 130; 0.15 1.10 0.15
MA | 30 70 120 150 0.15 1.15 0.15
PO potato SF  sunflower SB sugar beet (winter)
WC  winter cereals SC  summer cereals MA maize (grain)

These values for the basal crop coefficiehts ,,iq and K, ¢,q are adjusted, if the minimal
relative air humidity during the da¥/,,.;,, is different from 45% and the wind speed in 2 m
heightw, is not 2.0 m s according to (Allen, 2000):

ch,mid = ch,mid (table) + [004 (UQ - 2) —0.004 (Umm

ch,end = ch,end (table) + [004 (’1)2 — 2) —0.004 (Umzn

~4))(5) (58)

—4)(2)° (59)
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1.3.3.9 Direct Consideration of Crop Canopies Instead of calculating one reference
evapotranspiration and using crop coefficients to coneepitential evaporation and tran-
spiration, the Penman-Monteith equation can be evaluatedtly using different resistance
factors, crop heights and albedos for different crops, [rgogers (2000).

First the daily potential evaporation of a wet, bare $&iV %Y, [mm d~'] and the daily

pot

potential transpiratior@TR;‘fgf )o [mm d~!] of a crop canopy completely covering the soil

is determined by using the Penman-Monteith equation:

1 A [(1 — Oés) R, — RTL[ — G] + Pa Ca (63 - 6d)/"ﬂas
dayy _ * 9
(EVioi'do = 7 AT S (60)
1 A[(1—ae) Ryg—Rny — G| + paca(es — €q)/Tac d
T dayy = g — EI%Y 1
( Rpot )0 L A + ,-)/ (1 + ’I"C/Tac) act (6 )

(EVIv),  daily potential evapotranspiration of a wet, bare §ailn d ']

pot

(TRZZ,?)O daily pot. transpiration of a wet crop canopy completelyerinvg the soilmm d—1]

EI%w actual evaporation of the interception storagen d ']
L volumetric latent heat of vaporization/ J m=2 mm™1]
A slope of the vapor pressure cuiie’a K 1]

R, daily cumulative solar radiatiop/ J m =2 d—!]

Qg, Qe soil albedo, respectively crop albedo [1]

Rny net outgoing longwave radiatidd/ .J m—2 d—!]

G soil heat flux(MJ m=2 d~1]

Pa atmospheric density:g m 3]

Ca specific heat of moist aji/ J kg—* K 1] (=1.013)

es — €4 vapor pressure defidit Pa]

Tas, Tas aerodynamic resistances for sajk [s m~!] and cropr,. [d m~!]
Te crop canopy resistanee [d m ']

¥ psychrometric constaft Pa K 1]

(=0.0665kPa K ! at 100 kPa atmospheric pressure)

Second, the soil cover fraction by plants., [1] is used to distribute the above rates into
the daily potential evaporatioBV,%%Y [mm d~!] and transpiratiod R%Y [mm d—]:

pot pot
BV = (1 fue) (BVE)0 (62)
TR = foe (TR, (63)

where the soil cover fraction can be obtained from the lezd ardexZ AT [1] of the canopy
as follows:
Jpico = exp(0.45 LAI) (64)
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1.3.4 Potential Evapotranspiration - Haude (VDI) Method

For Germany Haude (1955) was the first who proposed an apgpbzased on the method of
Dalton to calculate the mean daily potential evapotraasipi [mm d—'] (DVWK, 1996).
As input data, the air temperatufe[°C] in 2 m height (10min mean at 13:30 GMT), the
relative air humiditylU [%] (10 min mean at 13:30 GMT) and monthly crop factgii, .
('Haude factors’) are required. Tht¢aude formulas given by:

Engty = [Haude (€s(T) — eq )13:30 (65)

ETj(j‘ty daily potential evapotranspirati¢mm d—!]
es(T)  saturation vapour pressulfePa] at 13:30 GMT

depending on the air temperaturg®C] at 13:30 GMT
ed actual vapour pressufgPa] at 13:30 GMT)

fHaude Haude factofmm d=! hPa~!] for the specific month and crop

Similar as for the Penman equation the vapour pressuretdéfiea] at 13:30 Uhr GMT is
estimated using the relative air humidity[%] and air temperature [FC] at 13:30 GMT:

U 17.627T

T) — . = (1 — — 1 S
(es(T) — eq)1330 = ( ) 6.11 exp( 312 £ T

100 ) (66)

Generally, the Haude method is not accurate enough to dstitmapotential evapotranspi-

ration for a single day. But, for calculating monthly and geaverages and for a regional
survey, the method is proven to be reliable (DVWK, 1996).

Table 3: Haude Factofgvm d~! hPa~'] VDI (1993)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
SF | 0.08 0.04 014 035 039 034 031 025 020 0.13 0.07 0.05
BF | 0.01 0.00 004 010 023 028 0.32 0.26 017 0.10 0.01 0.00
GR | 020 020 022 024 029 029 028 026 023 020 020 0.20
PA | 020 020 025 029 029 028 026 025 023 022 020 0.20
MA | 011 011 0411 0417 021 024 025 026 021 018 011 0.11
sB | 011 011 011 015 023 030 037 033 026 020 011 0.11
Www | 0.11 0.11 0.7 024 033 041 037 028 015 011 011 0.11
wB | 011 0.11 0.17 024 037 038 032 022 015 011 0411 0.11
OA | 011 011 011 0415 034 044 045 030 0219 011 011 011
Ry | 011 0.1 0.17 023 030 036 036 027 015 011 011 0.11

SF spruce forest BF  beech forest GR grass PA pasture MA maize

SB sugar beet WW  winter wheat WB winter barley OA oat RY rye
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1.3.5 Potential Evapotranspiration - Ritchie (CERES) Mettod

To calculate soil evaporation and plant transpiration etiog to the method of Ritchie
(1972) data on the average daily air temperatlyg, [°C], the soil albedo [1], the plant
albedo [1] and the solar radiatidR,,; [M.J m~2 d~!] are used. The mean daily air tem-
perature is estimated from the maxin@},,. [°C] and the minimall,,;, [°C] daily air
temperature by:

Thay = 0.6 Thpae + 0.4 T (67)

The weighting betweeft,,.. andT,,;, considers the decrease of transpiration during the
night, when the plant stomata are closed. The total alledd of soil and plants is cal-
culated from the soil albeda, [1] and the leaf area indekAI [1] depending on the time
of crop emergence.,, [d], begint,.¢ [d] and endt..s [d] of the grain filling phase and the
time of physiological maturity,,, [d]:

Qg fort < tbcf
ag =14 023 — (0.23 — a;) exp(—0.75 LAI)  for tyey <t < tecy (68)
0.23 + (LAI — 4)2/160 for teey <t <tn

The equilibrium potential evapotranspirati®i?y.. , [mm d—'] occurs at high air humid-
ity, when it is in equilibrium with the soil water of the soilidace. It is estimated by:

ETpoteq = Ry (4.88 1073 — 4.37 1072 a) (29.0 + Tiay) (69)

Oy albedo[1]
R, cumulative daily solar radiatiof/ .J m 2]
Taay Mean daily air temperatufeC|

The daily potential evapotranspiratidﬁfé’;’; [mm] is then calculated as the equilibrium
potential evapotranspiratioRT),,. ., multiplied by 1.1 to account for the effects of unsatu-
rated air. This multiplier is increased-1.1) to allow for advection when the maximum air
temperature of the da¥,.... [°C] is greater than 3&. It is reduced for temperatures below

5°C to account for the influence of cold temperatures on stdroktsure:

ETpoteq 0.01 exp[0.18 (Tynaz + 20.0)] for The, < 5.0°C
ETP = { ETpoteq 1.1 for 5.0°C' < Tpae < 35.0°C

day —
ETpoteq [(Trnaz — 24.0)0.05 + 1.1]  for 35.0°C < Tae
(70)

Finally the daily potential soil evaporatioEVj;"; [mm] depending on the leaf area index
LAT [1] results from:

day

ETL? exp(—0.4 LAI)  for 1.0 < LAI

BV =

day

ETP (1.0 —0.43 LAI) for LAl < 1.0
(71)
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1.3.6 Interception Models

The quantification of all relevant water fluxes in terreste@osystems often also includes
the determination of interception and related water fluXéss means we need to determine
storage and evaporation of water that is wetting plant sagf@uring and after precipitation
or irrigation. To calculate the net-precipitation, i.ee fhart of the gross-precipitation which
reaches the soil, different interception models have begaldped that can simulate water
storage caused by canopy interception as well as inteoreptiaporation, throughfall and
interception drainage including stem flow.

For forest systems one of the well known models is the Ruttteh(Rutter et al., 1971,
Bouten et al., 1996; Klaassen et al., 1998) which was siredlifiy Gash (1979), see also
Gash et al. (1995); Valente et al. (1997). For agricultuygtesms von Hoyningen-Huene
(1981) and Braden (1985) investigated the interceptionretipitaton in different crop
canopies and developed a simple interception model focalgural crops.

Rutter Model The model of Rutter calculates the amount of watidimm| that is wet-
ting the plant surfaces and thus is temporarily stored byctropy by applying a time-
continuous dynamical non-stationary modelling approa8esides the water storage
[mm)] this approach also considers the evaporation Fafevm d—!] and the drainag®
[mm d~1] from the wetted plant surfaces, assuming the drainage tistasf both canopy
drip and stem flow:

@ = (I1-a)R - D - FE (72)
dt
D 0 for S<e 3
- {b(S—c) for S>c¢ (73)
_ {d ETpp S/c for S <c (74)
ET, e for S>c¢

water storage due to interceptipnm]

precipitation ratémm d~1] given byR = dP/dt

drainage from canopy to sditvm d—!] (canopy drip plus stem flow)
interception evaporation raieim d—!]

(gross-)precipitatiofimm)|

fraction of throughfall1l] (empirical parameter)

fraction of drainagé¢l] (empirical parameter)

canopy storage capacity of interception (empirical patame
evaporation coefficient (empirical parameter)

»ot potential evapotranspiration ratem d—?)

ET,.: potential evapotranspiration ratem d—] during precipitation, e.g. calculated
according to Penman-Monteith (FAO) with zero stomatalstasice {; = 0)

E@O@@*umb:um
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The empirical parameteks b, ¢, d can be estimated, for example, by fitting the model to
measured data of net-precipitation possibly availablefoertain period. The simulated or
predicted net-precipitation rate then results by addiegstmulated rates of throughfall and
drainage (canopy drip plus stem flow) that reaches the soil.

Gash Model Based on the model of Rutter, Gash developed a time-disdgetamical
interception model. For this purpose precipitation is @wved as a series of single precipi-
tation events, where each event consists itself of thréerdift phases, i.e.

e of the wetting phase, from the onset of the precipitatiomewvatil the saturation of
the interception storage capacity of the canopy,

o of the saturation phase, i.e. when the interception stotagacity of the canopy is
saturated during the precipitation event and

o of the drying phase, from the end of the precipitation eventil the total drying of
the plant surfaces of the canopy.

The interception amourtt [mm| during a precipitation event of duratiaht = [t, t.] rep-
resented by the time interval is given by the sum of the amotmaterS, [mm| stored at
the plant surfaces during this time and the amount of wiatdrnm| that already evaporated
from this water storage

as
I =5 + E. = —dt + Edt (75)
At dt At
assuming a constant evaporation ratémm d—!] for the evaporation from the plant sur-

faces. According to the model of Rutter, equation (72), wte ge

d
S, = / a5 :/ (1—a)R—-D—FEdt = (1-a)P — [ Ddi—FE. =P - E, - Q
At dt At

At

(76)
where the net-precipitatioy [mm] is given by the sum of throughfall, canopy drip and
stem flow:

Q=aP + | Ddt (77)
At

The interception then results from:
I=S+FE =P —-E —-Q) +E.=P—-0Q (78)

To distinguish between wetting and saturation phase theuatmaf precipitation is cal-
culated that is needed to reach the canopy interceptioncitapd his has to include the
calculation of the evaporation which occurs during the pssoof saturation.
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From the model of Rutter then follows, that during the filliafithe interception storage
capacity, i.e. aslong & < ¢, no drainage occurs, i.e. iti3 = 0, and that the following
equation holds, if interception evaporation during fillisgassumed to be constant and given
by the termE (S/c) ford =1 andE = ET

d
d—f — (1-a)R — E(S/e) (79)
By integration with respect to time results, if also a constaecipitation rateR is assumed
during filling:

S =(1- a)% [1 —exp(—FEts/c] (80)

From this the time; d when the interception storage capacity is reachedSie.c, can be
calculated:
t, = —¢/E log[l - (E/R)/(1 - a)] (81)

Finally one gets the precipitation amouft [mm] necessary to fill the interception storage
capacity:
Rec

Ps = Rits = _F log[l_(E/R)/(l_a)] (82)

During the wetting phase as long as the interception wabeagé capacity is not completely
filled and the precipitation amoutit is still below P, there is no canopy drip and no stem
flow, i.e. there is zero drainage = 0. Therefore, ifP < Ps, the interceptior! [mm] is
given by:

I =(1-a)P (83)

During the saturation phase, when the interception staragacity is saturated, i.6, = c,
thenS, is constant and the supplementary interception is given by:

dl  dS. = dE. dE. _ d _
P~ 4P ' ap _ dp = R dt(/Edt)_E/R (69

Therefore, for the casB > P, the interception! [mm] is obtained by further assuming a
constant ratio betweel and R during precipitation (Gash, 1979), using equation (83) and
integrating equation (84):

I=(1-a)P + (E/R) (P - P,) (85)

For the application of the Gash-Model the empirical intptimn parametersa,c andE/R
are needed as input. As for the Rutter-model they may be agidrby using measured
data of throughfall or net-precipitation. Alternativeparameter values can be chosen from
corresponding tables depending on tree species and treiyd@te Vries et al., 2001).
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von Hoyningen-Huene and Braden Model Although the significance of interception
during precipitation for the determination of the waterdvade was well known from forest
hydrologic investigations, interception in agricultucabps was at first underestimated and
considered to be negligible. One reason for this might haenthe relatively high error
of precipitation measurement e.g. due to the impact of wimdl evaporation. Therefore,
precipitation amounts often have been underestimatednigauhrtly to a compensation
of the lack of water in the water balance, which occurred moigg interception (von
Hoyningen-Huene, 1981; von Hoyningen-Huene and Nasdal®85).

In contrary to forestal crops, interception evaporatiorirduprecipitation can be neglected
for agricultural crops. Therefore, for agricultural crdpgerception can be calculated by
using a simple saturation approach, for which only one ep#diinterception parameter
has to be determined and used as model input (Braden, 1985):

1 = frap |1 S (36)

d,
a fLAI + fplcv Pgrc'lsy

Iy daily interceptionmm] (i.e. the amount of water intercepted from precipitation
during one day)

Pdav daily (gross-)precipitatiofrmm]

a plant specific interception storage capacity per leaf area| (empirical parameter).
For an average canopy a value o= 2,5 mm is assumed

frar leafareaindexi]

fpicv  plant cover factofl] (= frar/3)

For increasing values of daily (gross-)precipitation thkeglated daily interception approx-
imates the saturation valuefr a; [mm], which is the product of the empirical parameter
a [mm] and the leaf area indef 47 [1]. If no precipitation falls, then also no interception
occurs, hence the interception curve given by equationg883$es through the origin (zero-
point). There, the curve attains its maximal slope, prescriby the plant cover fraction

fplcv [1]
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1.4 Darcy-Buckingham Model
1.4.1 Equations of Soil Water Flow Dynamics

1.4.1.1 Darcy’'s Law During investigations of the fountains in the city of Dijdfrance,
Darcy (1856) established empirically a linear relatiopsbétween the hydraulic gradient
AH/Az [1] and the volumetric water flua, [mm d—!] through a vertical saturated sand

column:
AH

qw = —Ksat As (87)
The volumetric water flux, [mm d~!] is the volume of water flowing per unit of time
through a unit area perpendicular to the direction of flwH [mm] is the height difference
between the upper end of the water column resting on the safate and the lower end
of the soil column, where the water flows ouhz [mm] is the sand column length and
Kt [mm d~'] is the saturated hydraulic conductivity depending on theg® medium,
in this case the type of sand.

1.4.1.2 Darcy-Buckingham Law To describe water flow through unsaturated soils
Darcy’s law, equation (87), was extended to a more general fty Buckingham (1907).
The coefficientk, the hydraulic conductivity, now depends on the water aurtea quan-
tity which changes with flowing. Since in most cases this dépecy is nonlinear, the more
general Darcy-Buckingham law is a nonlinear flux law:

dH
G = —K(0) (88)

qw volumetric water flux[mm d—!]
K(#)  unsaturated hydraulic conductiviyim d—?)
6 volumetric water conterjtnm? mm=3]
dH/dz hydraulic gradient [1]
H soil water potential [mm] (expressed in potential energgaf

water per unit weight of water)
z soil depth[mm]

Notation: The water potential),, is defined as an energy density, i.e. as the potential
energy of soil water per unit volume of watet),, thus has the dimension of pressure
[Pa]. Instead of relating the soil's water potential energy ®\blume of water, it is often
determined per weight of water and the water potential igesged as an equivalent in
height H = v,/(pw g). H is then called hydraulic head and has the dimension of length
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In the following it is assumed that the direction of the deptis downward positive, i.e.
that z points to the centre of Earth. Additionally, the refese height of a reservoir of
pure and free water, which gives the reference state fomsgr potential measurements,
is assumed to be the height of the soil surface, 4~ 0. Furthermore, by convention,
the gravitational potential at a positiarabove the reference heigh is higher than at the
reference point itself. Therefore, the gravitational ptitd ¢, [Pa] at pointz [mm] is given
by

Yg= —pwg(z—20)= —puwg2 (89)
wherep,, ~ 1.0 kg dm—2 stands for the density of water apd= 9.81 m s~2 for the
acceleration of gravity. Neglecting the osmotic potentied water potential or hydraulic
potential of the soil (as energy density), [k Pa] is the sum of the matric potentidi,, [Pa]
and the gravitational potentigl, [Pa]:

ww:wm+¢g:¢m_pw92 (90)

Expressing the water potential as energy per unit weightatényi.e. by the hydraulic head
H =9y, /(pw g) and the matric heatd = 1,,,/(pw g), ONE gets

H=h-2z (91)

1.4.1.3 Mass Balance Equation Assuming that as a first approximation the soil can be
considered as a rigid porous medium, the mass balance eqdatisoil water is given by

o+ 22 45, =0 (92)

whereS,, = S, (t,z,0(h)) [mm mm~' d~1] denotes the sink term representing the root
water uptake rate.

1.4.1.4 Richards Equation Inserting ¢,, from the Darcy-Buckingham equation (88)
into the mass balance equation (92) yields the Richardgiegua it's mixed form:

00 0 oh
S = 5L KOM) (52 = 1)] = Sult,2,0(h) ®3)

wheref(h) [1] is called water retention function describing the voktnit soil water con-
tent as function of the matric potential. Applying the chaife of differentiation ta6 /0t
the head form of the Richards equation is obtained:

om W= D1 km) (P 1))~ Sultzn) (94)
where the functionC(h) = df/dh [mm~'] is called specific soil water capacity and
K (h) [mm d~'] denotes the unsaturated hydraulic conductivity as a fongif the matric

potential.
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1.4.2 Hydraulic Functions

For the application of the Richards equation (94) in soilexdiiow simulations the coeffi-
cients of the equation have to be known. That means, theafmipfunctions of the matric
potential h,

a) the water retentiofi(h), i.e. the volumetric water contefitat matric potential h,
: . . do

b) it’s slope, the specific water capacity(h) = T and

c¢) the unsaturated hydraulic conductivi/( )

have to be given, if possible, in a form, which can be evathiati¢h relative ease. Hence, to
represent the hydraulic functions in a useful way numeradffisrdnt mathematical closed
form expressions have been formulated and applied (Leij.,e1297). These representa-
tions are referred to as 'parametric models’ or 'paramsadions’ of the hydraulic func-
tions, since they provide a small set of parameters by whiehfarm of the functions is
completely determined. The values of these parametershaained by fitting the corre-
sponding parametric models to the measured hydraulicituret Thus, only a few param-
eter values are sufficient to represent the hydraulic ptigseneeded to simulate soil water
flow with Richards equation. Furthermore, using comprelerdatasets on measured soil
hydraulic properties pedotransfer functions can be dérigach that parameter values for
parameterisations of soil hydraulic functions can be deiteed by basic soil properties in-
cluding data on texture, bulk density and organic mattetezar(van Alphen et al., 2001).
Since soil horizons can have considerably different sadraylic properties, parameter val-
ues are needed for each single soil horizon.

In EXPERT-N the following parametric models according to
e van Genuchten (1980) - Mualem (1976),
e Brooks and Corey (1966) - Burdine (1953),
e Hutson and Cass (1987) - Burdine (1953), and
e Brutsaert (1966) - Gardner (1958)
are provided as the standard parameterisations for thatlycfunctions.

Moreover, in EXPERTN additional parametric models to represent hydraulicfioms can
be chosen, in particular for bimodal hydraulic function§.measurements are available,
parameter values can be estimated using the fitting and izption routines of KPERT

N. If measured data on hydraulic properties are lackingbbsic soil properties are known,
pedotransfer functions are usedE=RTN to determine the soil hydraulic parameter values
which are needed.



1.4 Darcy-Buckingham Model 33

1.4.2.1 van Genuchten - Mualem Parameterisation The today most widely used para-
metric model is the model of van Genuchten (1980):

O(h) = Ores + (Osat — Ores) [1 + (a [R)™ 7™ (95)
_ 1/n
1 6—6 1/m
h(0) = — = (i) -1 (96)
( ) (0% [ Hsat _Hres

h matric potentialmm]
0 volumetric water conterjtnm? mm=3]
Osat saturated volumetric water contgntm? mm 3]
Ores residual volumetric water conteptim?® mm 3]

a,n,m van Genuchten [mm~1], a > 0, van Genuchten fi] and m[1], n > 0, m > 0,
oftenm = 1 — 1/n is assumed, see equation (99)

Osat, Ores, a, n, m are the parameters which can be determined by matching thenptic
model to experimental data. Often the saturated volumetgiter contentl,,; is set equal

to the porosity¢ andé,.; is set to zero. But in field experiments, because of entrapped
air and large pores which drain so fast that they get not at#d)d,; is often found to be
smaller than porosity. Moreover, the residual water cdriten which is thought to indicate
adsorbed water, is mainly used as a pure shape parameteg giviadditional degree of
freedom for curve fitting.

The unsaturated hydraulic conductivity is calculated gighee general model of Mualem
(1976) and Mualem and Dagan (1978), i.e. by the followinggn&l formula:

[ sy as -
0 ) (97)
/0 Ih(S)|~% dS

K(SO) = Ksat Sg (

Here, the relative saturatios}, [1] at the matric potentiak, [mm] is defined by:

H(hO) - Hres

So = S(ho) = - "y

(98)

K(Sp) unsaturated hydraulic conductivify [mm d—!] as function of relative saturatiosy [1]
Koot saturated hydraulic conductivifynm d—!]

h matric potentialmm]

6 volumetric water conterjtnm? mm 3]

Osat saturated volumetric water contgntm? mm 3]
Ores residual volumetric water contepum? mm =3

D,q,T parameter valueld], which can be estimated by curve fitting to experimental:data
p>0,¢>0,r>0; acc. Mualem (1976) = 1, ¢ = 1 andr = 2.
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Using the van Genuchten parameterisation with the resinict. = 1 — ¢/n results the fol-
lowing expression for the unsaturated hydraulic conditgtii (k) [mm d~'] as a function
of the matric potentiah [mm] (van Genuchten, 1980):

K(h) = Ksar {[L+ (k)" 7"} {1 = (alh)"~* [L+ (aln)"]""1}" (99)

Without the restriction on the parametera mathematical expression faf(h) [mm d—!]
was given by van Genuchten and Nielsen (1985), which is ihrfamre general but also
more difficult to evaluate:

K(h) = Ksar {[1+ (a|p])"]7"} [L(u, 0))" (100)

K(h) unsaturated hydraulic conductiviyim d—!]

h matric potentialmm)|

Koot saturated hydraulic conductivifynm d—!]

a,n,m van Genuchten [mm~1], n [1], m [1]

D,q,T parameter values [1], acc. Mualem (1976% %, qg=1landr = 2.

I.(u,v) incomplete Beta-function, which is calculated by contihéractions,
wherex = [1 + (alh|)"] ™, u=m+gq/nandv=1—-¢/n,u>0, v >0

1.4.2.2 Brooks and Corey - Burdine Parameterisation One of the precursors of the
van Genuchten parametric model is the model of Brooks andyQa©66):

_ -2
H(h) _ Ores + (Gsat Hres) (h/a) forh <a (101)
Osat fora <h
0 — 0,00 \ /A
h(f) = a <7> for 6 < Oq1, (102)
Hsat - 07‘68

(for 0 = 044 , i.€. for h > a, the functiond(h) cannot be inverted).

h matric potentialmm]

6 volumetric water conterjtnm? mm 3]

Osat saturated volumetric water contgntm? mm 3]

Ores residual volumetric water contepum? mm=3]

A Brooks and Corey exponent [1]

a air entry value or characteristic length of the goilm)|
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Near saturation it is assumed thtaremains constanty = 6,,;, until the matric poten-
tial falls below the value ofi, the air entry value. Then the relative saturation deceease
exponentially with further decreasing matric potentiaheTslopedf/dh of the retention
function, i.e. the specific water capacity is discontinuatie. Hence, the Brooks and
Corey parameterisation is not smooth (not continuouskguifitiable) near saturation.
Fora|h| > 1 the parametric model of Brooks and Corey is a good approiamaf the van
Genuchten model, if we set= —a~! and\ = mn. Therefore, the physical interpretation
of the parameter van Genuchterns usually to be the inverse air entry value of the soil.

From the model of Burdine (1953), i.e. from equation (98) hwit2, g=2 and r=1, results
the following expression for the unsaturated conductivitih) [mm d~!]:

Km):{xggwwﬁﬁkfmh<a (103)
Kot fora <h

h matric potentialmm]

Kou saturated hydraulic conductivity (k) [mm d—!]

A Brooks and Corey exponent [1]

a air entry value|mm)|

1.4.2.3 Hutson and Cass - Burdine Parameterisation Following the model LEACHN
(Hutson and Wagenet, 1992), the parametric model of HutedrCass (1987) can also be
used in XPERTN:

| Osar (h)a)"/P for h; > h
em)_{@wu—(W@%%)wW@Qlﬂ for0>h > h; (104)

Maz{awwmrbl 7lfm9<& (105)
a(1=0/0541)%(0i/0sa) (1 — 0;/05a)"2 fOr 6; <60 < O

h matric potentialmm)|

0 volumetric water conterjtnm? mm 3]

Osat saturated volumetric water conténim? mm 3]

0i/0sar = 2b/(1+ 2b) [1]

h; =a [2b/(1+ 2b)]7° [mm]

a air entry valugmm], parameter value to be fitted (Campbell A)

b parameter value to be fitted (Campbell[B), corresponds to the inverse

of the Brooks and Corey exponenti.e.b = A~!
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To obtain a smooth transition zone from the unsaturatedes#turated part of the curve
the exponential function is extendeditp< h < 0 by a parabolic function, in a way that no
additional parameters are needed. Furthermore, the tdenv& /dh is continuous, thus,
also ath;, which is the inflection point of the curve.

For each soil horizon the empirical constam@ndb, so-called Campbell A and B, are esti-
mated by matching the parametric model to the measuredim@idnonction. They can also
be calculated from basic soil data on texture, bulk density @ganic matter, respectively,
carbon content of the considered soil horizon by the use dbfpansfer functions. Note
that for this parametric model the residual water conteagigo zero.

The hydraulic conductivity can be obtained from equatid®) (®ith p=2, g=2 and r=1, i.e.
by the model of Burdine (1953):

K(h) = Ko (h)a)273/% for h < h; (106)
K(0) = Kot (0/05q¢)?"+3 for 0 > 0, (107)

K(h),K(0) hydraulic conductivitymm d—!] as a function of) or i

h matric potentialmm)|

6 volumetric water conterjtnm? mm=3]

Koot saturated hydraulic conductivifynm d—!]

Osat saturated volumetric water contgntm? mm 3]

a,b Parameter values of equation (105)

For values of the matric potential bf< h; = h(6;) the expression foK (h) is applied, else
for the corresponding water conteifts> 0;, the transformed equation féf (0) is used.

1.4.2.4 Brutsaert - Gardner Parameterisation The parametric model of Brutsaert
(1966) for the retention function is a specific case of the ehadl van Genuchten (1980)
takingm = 1. Hence, Brutsaert’s model may be seen as a previous spesifiom of van
Genuchten’s model. The same function type was used by Ga(ti#&8) for the parame-
terisation of the unsaturated conductivity function, dee &/achaud and Vauclin, 1975)

1

Kh) = K¢gg ———————5 108
)= Koot Ty (o9
K(h) unsaturated hydraulic conductivityxm d—!] as a function ofy
h matric potentialmm)|
Kout saturated hydraulic conductivifyhm d—!]
A B Parameter values Gardnerf#m 1] and Gardner B [1]

In ExXPERTN the Brutsaert-Gardner parameterisation is still usecbmbination with the
pedotransfer function of Vereecken et al. (1989, 1990).
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1.4.3 Pedotransfer Functions (PTFs)

The quality of the water flow simulations strongly dependgtanaccuracy of the soil hy-
draulic functions that are used. Conventionally the hylitdunctions are derived through
laboratory measurements, e.g. by the multistep outflow ogefian Dam et al., 1994). Al-
though these measurements can be accomplished in a rglatirsght forward way, they
are laborious and time-consuming. Therefore, they areastintensive. To reduce these
costs alternative methods, so-called pedotransfer ametiBouma and van Lanen, 1987),
have been developed to predict soil hydraulic propertiescty from basic soil properties
which are more easily determined, such as texture, bulkityesrsd organic matter content
(Wobsten and van Genuchten, 1988; Vereecken et al., 198M); IPetje and Tapkenhin-
richs, 1993). Two fundamental types of pedotransfer famstican be distinguished: the
class pedotransfer functions and continuous transfetifurs

1.4.3.1 Class Pedotransfer Functions For the determination of class pedotransfer func-
tions a comprehensive dataset of measured hydraulic &ngcfor soils of a broad range of
different soil types has to be given. Based on such data a pkedotransfer function can
be defined, if the soils are grouped into different taxonoolasses with associated average
hydraulic functions from the soils belonging to the classr this purpose the measured
hydraulic functions are parameterised e.g. by the van Ga#angarametric model. Hence,
the class pedotransfer function assigns to each soil dlasotresponding parameter values
of the average retention function and the average unsaturgtraulic conductivity.
Examples are the pedotransfer functions of Clapp and Hoyebg1978), Rawls et al.
(1982) and Carsel and Parrish (1988) for the U.S.A., de J©88§2) for Canada, Wosten
et al. (1994) for the Netherlands, Zacharias and Bohne (1f@®@Germany.

To obtain the input data needed for the capacity water floweahibe EXPERT-N data work
bench program uses the class pedotransferfunction of R€bggl) to calculate retention
values at field capacityd¢. = 6(hy.), —3000 mm < hy. < —600 mm, hy. depending on
soil type) and at permanent wilting poirtt,(,, = 0(hpwp), hpwp = —150000 mm).

1.4.3.2 Continuous Pedotransfer Functions Most often datasets from which pedo-
transfer functions for soil hydraulic functions can be dedi also include information on
the basic soil properties such as bulk density, texture aganic matter content for each
soil horizon. Therefore, often empirical regression eiguatare obtained, which relate the
basic soil properties of a soil horizon to parameters ofibs hydraulic functions. In con-
trast to the average hydraulic function obtained by a clagdswansfer function, for specific
basic soil properties also specific hydraulic functions bardetermined from regression
eqguations, which consequently are called continuous peukfer functions.



38 1 SOIL WATER: STORAGE AND SEEPAGE

In EXPERTN the choice is between the continuous pedotransfer fumetof Campbell
(1985), Rawls and Brakensiek (1985) and Vereecken et 8818990).

In the following ’log’ denotes the natural logarithm, i.e. the inverse of the erptal
function 'exp’.

a) PTF of Campbell Input data for the pedotransfer function of Campbell (198%) the
soil bulk densityp, [mg mm~3] and the textural data, i.e. fractions of safig,,q [1], silt
fsiie [1] and clay f.iqy [1]. The pedotransfer function itself is finally given by tfudlowing
regression equations for the parameters a [kPa] (Campbelhé b [1] (Campbell B), and
for the saturated hydraulic conductivify,,; [m s'] :

a = —05d;"? (ps/1.3)067 (109)
b = d;'? + 020, (110)
Ket = 3.9107° (1.3/ps)'*® exp(—6.9 furay — 3.7 fuirt) (111)

where the geometric mean particle diametgfmm] and it's geometric standard deviation
o4 [1] (Shirazi and Boersma, 1984) are calculated as follovesf@bell, 1985):

dg = exp(eg) (112)
eg = felaylog(deiay) + fsitelog(dsit) + fsand 108(dsand) (113)
og = exp(fy) (114)
fo = [ feaylog(deaay)® + fsurlog(dsae)® + fsand10g(dsana)® — €5 ]'/2 (115)

The arithmetic mean particle diameters for the three textlaisses are given by, =
0,001 mm, dg;;; = 0,026 mm andds.,q = 1,025 mm. They result from the USDA
classification (Shirazi and Boersma, 1984) of particle ditars into texture classes (clay:
0 < d < 0.002 mm, silt: 0,002 mm < d < 0,05 mm, sand:0,05 mm< d < 2,0 mm for

the particle diameter).

For the PTF it is assumed that the saturated volumetric veatetentd,,; is set equal to
the porosity¢. If no measurements fat are available, it is calculated iy = 1 — 2?25.
Furthermore, the residual water contépt; is set to zero. The parameter values for para-
metric models of van Genuchten, respectively, of Brooks@aty are estimated using the

approximative relations = —a~!,b = A"1,andA =n —1form =1 —1/n.
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b) PTF of Rawls and BrakensiekTo calculate the parameter valuestf; [1], 0,es [1],

A [1] anda [em] for the Brooks and Corey retention function according to Raamd Brak-
ensiek (1985) the following PTF is used, for which again ing@ta on soil porosity) and
soil texture are needed :

Osat = 0.01 = 0.15 foana — 0.22 fuay + 0.98 ¢ (116)
+0.99 f2,, + 0.36 ¢ fsana — 1.09 ¢ feray
—0.96 ¢f 20y — 0.24 ¢ foand + 1.15 ¢ furay
Ores = 0.0240.09 fsana + 0.51 feiay +0.03 ¢ (117)
—1.54 f30 — 011 foanad — 1.8 ¢* fiiay
+3.1 ¢ fday — 0.24 ¢* feiay
log(A\) = —0.78 + 1.78 founa — 1.06 ¢ — 0.53 £2, (118)
—27.3 f3, + 1.1 ¢* = 3.1 ¢ fsana
+79.9 ¢ [0y +2.66 ¢* f2,,0 — 61.1 ¢6° f2,,
—24 f2 . ctay — 0.67 ¢ fetay
log(a) = —5.34—185 fyay +248 ¢ +214 f7,,
+4.36 ¢ fsand + 61.7 Aferay — 14.4 9> f2,4
+85.5 &% [0y + 12.8 fynafeiay — 895 ¢.f2a,
+7.25 ¢ f g — 54 feand S ey — 50.0 ¢ feiay

(119)

The parameter values for the other parametric models niesthié same way as for the PTF
of Campbell from the approximative relations, ebg= A~ for the parameter Campbell B
ora =—a"! [em~1!] for van Genuchten.

c) PTF of Vereecken et al. This pedotransfer function is based on the parametric mufdel
van Genuchten for the retention function with= 1. In this case the van Genuchten para-
metric model coincides with the earlier model of Brutsag@&66). Using input data on the
bulk densityp,, soil texture and organic matter content of the soil, thivfahg parameter
values of the Brutsaert parameterisation for the reterftiontion can be calculated using
the following regression equations within [cm 1]

Osat = 0.81 —0.28 ps + 0.13 fuay (120)
Ores = 0.015+ 0.5 feray + 1.39 foorg (121)
log(a) = =249+ 2.5 feana — 35.1 foorg — 2.62p5 — 2.3 feiay (122)
log(n) = 0.05—0.9 fsand — 1.3 feray + 1.5 frna (123)
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Again, approximative relations are applied to estimatetrameters for the other paramet-
ric models, which are used indERT-N.

Equation (123) of the pedotransfer function may deliveugalofn < 1 for the parameter
van Genuchtem. Hence, the application of Mualem’s theory (Mualem, 19%#Wen by
equation (97) withy = 1, would lead to a zero relative hydraulic conductivity, sinéor

n < 1, the integral evalutes as

o 1 = 400 forf=1
—— dx 124
/0 h(x)? {< +oo forf <1 (124)

(see appendix). Therefore, Vereecken et al. (1990) addifip developed regression equa-
tions to determine the unsaturated conductivity based ep#nametric model of Gardner
(1958), see equation (108). The following equations of #opransfer function determine
values for the parameters saturated hydraulic conductivit,; (in [em d—1] 1), Gardner A
([em~1]") and Gardner B [1]:

log(Kget) = 11.04 — 0.96 log(feiay) — 0.66 log(fsand)
— 046 10g(fcorg) — 8.43 ps (125)
log(A) = —0.7— 1.9 foana — 5.8 fuay (126)
log(B) = 0.07 —0.19 log( feiay) — 0.05 log( fsir) (227)

If a measured value for the saturated hydraulic condugtigitavailable, the regression
equation for the parameter Gardner A can be improved (Vkezeet al., 1990):

log(A) = —2.64 — 1.9 feuna + 5.0 feiay + 0.51 log(Ksar) (128)

In the case of measurédd;,; also the general integral of Mualem, equation (97), with 2
could be applied. But then, the fixed valyes- 2 andg = 1 would give improper estimates
for the unsaturated hydraulic conductivities. Therefgreand ¢ are also determined by
regression equations (Vereecken, 1995):

p = —0.43+1.73 log(n) — 0.24 log(Ksa:) (129)
= —0.75 — 0.6 fatay + 0.07 log(Kuqt) + 1.44 0, (130)

that not only require the measuréd,; [cm d~!] value, but also the validity of the inequal-
ity n > ¢ for the parameter. of the van Genuchten parameterisation with= 1, see
equation (124).
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d) PTF of Scheinost et al. The pedotransfer function of Scheinost et al. (1997) for the
water retention function was determined for the Az%* connected study area of the FAM-
Research Station Scheyern (Schroder et al., 2002). Basedloes for soil texture bulk
density p, [mg mm~3] and organic matter content, similar as for the PTF accortting
Campbell, parameters for the van Genuchten parameterisatthm = 1 anda in [em =]

are determined using the geometric mean particle diamdgfenm], its geometric standard
deviationo, [1] and the following regression equations:

Osat = 0.85¢ + 0.13 fuay (131)

Ores = 0.52 fuay + 1.6 foorg (132)

a = 107%(0.25 + 4.3d,) (133)

n = 039+ 220" (134)
Ps

where the porosity [1] is determined by = 1 — 5 65" and feqy [1], respectivelyfcorg
[1] denote the fractions of clay and organic matter contdetgrmined agg per kg total
soil including the rock or gravel fraction).

For the calculation of the geometric mean particle diamégefmm| and its geometric
standard deviatiow, [1] the average particle diameter of a texture class is oeted
according to Shirazi et al. (1988) using the geometric mdahe particle size limits of
the texture class instead of the arithmetic mean. In paaticthe mean particle diameters
delays Asittr dsand, drock, fOr the four texture fractions clay (0,04m < d < 0,002 mm),
silt (0,002 mm< d < 0,63 mm), sand (0,63 mm< d < 2,0 mm) and rock (2,0 mm
< d < 63,0 mm) result from the lower and upper particle size limits @ taxture class;
ands, by taking,/s; s,,. For example, for the texture fraction clay the mean valwsbees
delay = +/0,00004 mm- 0,002 mm= /8 - 10-8 mm = 0,00028 mm.

This PTF delivers, similarly to the PTF of Vereecken et aB8Q), for the parametet
values withn < 1, such that Mualem’s theory for the determination of the tursded
hydraulic conductivity cannot be applied without restdnt Therefore, in KPERT-N the
PTF of Scheinost et al. (1997) is evaluated in connectioh thi¢ PTF of Vereecken et al.
(1990) to get estimates of the unsaturated hydraulic cdivityc

e) PTF of Wasten et al. Using the database HYPRES, which gathers measured soil hy-
draulic properties of European soils (Wosten et al., 19989), the following continuous
pedotransfer function was developed (Wosten et al., 1988}, because of the louR?
values obtained in the regression analysis, it is indic#tetl the predictions of hydraulic
property functions when using this PTF are fairly inacoai@vosten et al., 2001):
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Osat = 0.86+ 0.17furqy — 0.3ps — 0.015f2, +0.82f2. 1 (135)
+0.0002f;4, + 0.0001f;}; 4 0.015 log ( firr)

_0'73forngclay - 0-06psfclay - 0-12psforgM - 0-017ftopfsilt

log(a) = —13.97 + 3.14fuay + 3.51 faits + 64.6 forgnr + 15.29p5 (136)
—0.19 frop — 4.67p2 — 7.81f3,, — 68.7f2 01

+0.0005 f,,4, + 0.07log(firr) + 0.1510g (forgnr)
_4'55psfsilt - 48-52psforgM + 0-67ftopfclay

log(n) = —26.88—2.2fuay + 0.74 st — 19.4forgar + 45.5ps (137)

—7.24p + 3.66f3,, + 28.8512 s

—12.81p~ " = 0.0015 ., — 0.0002 o?éM

—0.29 log(fsilt) —0.07 log(forgM) —44.6 IOg(ps)
_2-26psfclay + 8~96psforgM + 0~72ftopfclay

log(px) = 1.05+6.19f2,, — 11.36f2,0r — 0.2310g(forgar)” (138)
_3-54psfclay + 0-28psfsilt + 4-88psforgM

log(Ksat) = 479+ 3.52fg + 0.93 frop — 0.97p> — 4.84f3,, — 3.22f%;, (139)

+0.00001 fo;; — 0.0008 .5, — 0.641og( fuirr)

_1'4psfclay - 16-73p5f0rgM + 2-99ftopfclay - 3-31ftopfsilt

wherepsx is defined bypx = (p + 10)/(10 — p) andp [1] with constraint—10 < p < +10

is the parametep of the Mualem integral (97)fciay, fsi: @and forgns denote the fractions
of clay, silt and organic matter (ihg per kg soil), « andn are the parameters of the van
Genuchten representation of the retention curve wits 1 — 1/n, K, [em d—1] denotes
the unsaturated hydraulic conductivity. For the top soilsetf;,, = 1, elsef;,, = 0.
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f) PTF of Teepe et al. By means of 1850 measured retention curves for forest sedpd
et al. (2003) determined a class as well as a continuous f@ed@er functions to estimate
parameter values for the van Genuchten parameterisatithre setention curve withn =
1—1/n. Both pedotransfer functions serve to better represergrwatention of forest soils
that are different from arable soils mainly by having an stdbed top soil.

As before, the following pedotransfer functions were clatad using multiple regression.
Depending on data for the bulk soil density [mg mm 3] and soil texturefsanq [1], fsi
[1], feay [1] (weight fractions of fine soil) the derived functions prawiestimated values for
the saturated volumetric water contégy; [1], for the van Genuchten parametergem !
andn [1] and for the volumetric water content at permanent wiltingp6,.,,, [1]:

Ot = 0.98—0.37p, (140)

log(a) = 55.58 —4.43ps — 20.0f2%;, — 47.0f 10y — 6.6 fsana/ps ~ (141)

—3683f;(1/2d - 3-59fsand/ps - 16'0f3and - 3692-]051261?2

+8.5910g( fsand) + 7-251og( fsirt)

log(n —1) = —2.85+2.74f2 .+ 1.64 (142)
1/2
Opop = 011 +0.22f/2 — 0.0 fsand (143)

The residual volumetric water contefjt.s [1] was not included in the multiple regression
analysis, since in most cases the residual water conteainebtt by the fitting procedure
was zero. Instead a multiple regression was calculatechfovblumetric water content
at permanent wilting poind,,,,,. Thereforeg,., is estimated applying the van Genuchten
parameterisation of the retention curve and inserting taemcontent valué,,,,, given by
equation (143) together with the value of the matric pogitj,,,, = —1600 kPa, which
defines the permanent wilting point (Teepe et al., 2003).
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1.4.4 Numerical Solution of the Richards Equation (LEACHN)

Following the approach of the LEACHN model, soil water flovgisiulated by solving the
matric potential based form of the Richards equation usingerical approximations.

oh 0 oh
—=—K — —1)] - 144
C(h) 57 = 5[ K(h) (5= = 1)] = Stz h) (144)
t time [d]
z depth (positively downward)nm)|
h =h(t,z) soil matric potentiajmm] (in the model

the negative pressure of soil suctiPa] is transformed tdmm| of water head)
06

C(h) = o differential water capacity as a function®br h [mm 1], respectively
6 =0(t,z) volumetric soil water conteritnm? mm=3]
K(h) hydraulic conductivity as a function of [mm d—!]

Sw(t,z,h)  sink term for root water uptakenm mm=! d—1]

1.4.4.1 Finite Difference Discretisation For the numerical solution, which is based on
a finite difference method, the one dimensional dom@id] representing the soil profile is
vertically divided into n equidistant layers. To includethoundary conditions two virtual
grid points for the the upper and lower end of the soil profie@dded to the n grid points
that represent the layers. By applying the Crank-Nicolsireme the resulting finite differ-
ences for the time stefy ¢ from timet/~! to ¢/ and for the spatial stepz from nodez;_;

to z; is for (i = 2,...,n — 1) given by (Schwarz, 1986):

, , -1 , . A .

e I W L, Ol

v At Az 2Az 2Az
(145)
j—1 . . A -
_ Ki*% (h{—i—h{ ' by ki 1) — 7
Az 2Az 2Az w,e
where )
¢ % =SlCt]) +Ch ),
- 1 - - - 1 - .
KTl = SR + KED], KL = SR + K]
2 2

These equations together with the corresponding boundargitions define a tridiagonal
equation system, which is nonlinear due to the nonlineaeui@gncy of the hydraulic func-
tionsC(h) and K (h) from the matric potentiab. The equation system is solved iteratively
by successive substitution (Picard iteration): Startirithwhe solution for the previous
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time step and after substitution of the matric potentiatsioied during the previous itera-
tion step, a tridiagonal linear equation system resultfechich new matric potentials are
calculated for the next iteration step using the Gauss eéitiin (or LU-decomposition)
method. After maximally 20 steps the iteration is termidadad, in case of convergence of
this numerical procedure, the calculated matric potentiale the solution of the Richards
eqguation for the actual time step (Hutson and Wagenet, THB@tson et al., 1980).

To avoid numerical errors by calculating the differentialter capacity only water content
values just under the saturation value are admitied (0.9999 6,,).

1.4.4.2 Initial Condition The solution of the Richards equation requires the speeifica
tion of the initial distribution of the matric potential thmghout the whole solution domain
[0, ¢] which represents the soil profile:

h(t,z) = ho(z) for t=ty and 0 <z</{ | (146)

wherehyg is a prescribed function of andt is the time when the simulation starts. Al-
thoughhy(z) can be any arbitrary function, often for the initial condlitia steady-state or
equilibrium condition is assumed.

1.4.4.3 Upper Boundary Condition Depending on the given meteorological condi-
tions, by the upper boundary condition we can consider riafitin into the soil profile
with or without ponding surface water, as well as evaporatiom the soil surface. Three
cases are distinguished:

a) infiltration during ponding surface water,
b) unconfined infiltration or evaporation,

¢) limited evaporation at the top soil under dry conditions.

At the soil surface, i.e. for z=0, the upper boundary coadiis given in each of the three
cases in terms of water flow and matric head using a Dirichlatflux boundary condition:

(K% - K)<N+IR-IC—EV andh(t,0)=0

qu(t,0) = —(K% — K)=N+IR—IC—EV and hgy < h(t,0) <0 (147)
—(K%: — K)>N+IR—-IC—EV andh(t,0) = hgy,

z

t time [d] qw Vol water flow[mm d =]

h matric potentia[mm] K hydraulic conductivitymm d—!]
EV  actual evaporation raewm d 1| N precipitation ratémm d—!]

IC  interception ratémm d 1 IR  irrigation rate[mm d 1

hary  Minimal value of matric potentidinm| at which evaporation is limited due to dry conditions
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First, it is determined which of the three cases exists aatieal time step, before matric
potential and hydraulic conductivity of the top numericall $ayer can be calculated. In
case b)the prescribed precipitation raté [mm d~!] (or throughfallN — IC [mm d~1] or
irrigation I R [mm d~!]) diminished by actual evaporatidiiV’ [mm d~!] is lower than the
maximal possible infiltration rate as determined by the @dtydraulic conductivity of the
top soil, and the infiltration rate equals the prescribed.rht this case the upper boundary
condition is a flux boundary condition or von Neumann coodit{Schwarz, 1986) and the
top soil matric potential belonging to the prescribed fluelia determined by iteration. For
each rain or irrigation event the actual duration of inftitva results from the given amount
of water and the infiltration rate.

Very intensive precipitation events or very high irrigatioan lead to a saturation of the
top soil because of too small infiltration rates. In thase a)the matric potential of the
surface soil,, is set to zero and the upper boundary condition becomes ehliticon-
dition (Schwarz, 1986). The infiltration then is limited apdnding water occurs at the
soil surface. The retained amount of water infiltrates dutive next time steps until it has
completely entered the soil or until the next precipitatiwent starts.

Likewise a Dirichlet condition is applied for the upper bdarny incase c) when the soil
dries out during longer periods of evaporation without nateehy rewetting. Initially the
upward water flow equals the prescribed potential rate dfesa@iporation (von Neumann
condition). But, if the top soil gets drier and drier thisdeao a water flow that is more
and more limited by a low hydraulic conductivity of the topilsesulting in an actual
evaporation below the potential rate. If the soil furtheiedrand the soil surface matric
potential falls below the given limity,.,,, then the upper boundary condition is changed to
the Dirichlet conditiono, = hayy.

By including the upper virtual knat = 0 the discretisation of the Dirichlet condition fol-
lows the same scheme as for= 1 and the other knot§ = 2,...,n — 1), but now with a
prescribed valuei{, = 0 or i}, = hy,,,) for the matric potentiah]_, = hj at time;:

, . j—1 A . , .
L s VRt e ol R
! At Az 20z 2z

(148)
K1 . 1 . 4y
0 (h{+h{ oty 1)
Az 2Az 2Az
The discretisation of the von Neumann condition resultsiftbe same scheme by prescrib-
ing the water flow,,,, [mm d~!] at the upper boundary:

) . 7—1 . . ; i
T S S TRPR Sl S Sl IR
1 At Az 2Az 2Az Az

In both cases the resulting equation has the two unkndwmed?,.
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1.4.4.4 Lower Boundary Condition Also for the lower boundary condition different
situations are considered, namely, if unsaturated ora@iiconditions prevail at the lower
end of the soil profile:

e unsaturated:

a) free drainage,
b) prescribed matric potential at the bottom,
c) zero flux at the bottom,

d) lysimeter condition.
e saturated:

e) prescribed daily groundwater level

f) prescribed daily drainage flux.

Each of these cases is described similar to the upper bouedadition either by a flux
boundary condition (von Neumann condition) or by presogba value for the matric po-
tential at the lower boundary (Dirichlet condition). If theatric potentiah{hLl is prescribed
at the virtual knot = n + 1, the discretisation of the Dirichlet condition for the krot n
at timej is obtained as for the other knots following the Crank-Nsool scheme:

1 opd o pil KVL i ni T pi g
07]1_5 n n _ n+s3 ( n+1 nt+l  '¥n n _ 1) _
At Az 2Az 2Az

j—1 , , , ,
e R L S
Az 2Az 2Az

For a prescribed fluy,,; [mm d~!] at the bottom of the soil profile the discretisation of the
von Neumann condition results in the following equation:
) ) Jj—1 ) ) ; i
“1 hi — b Bot  Knl hi+ b7l Bl 4RI

J 2
o L R — — -1 151
C At Az Az ( 2Az 2Az ) (151)

Similar as for the upper boundary condition, both discestizquations have each two un-
knowns:hJ, andh! .

In case a)if free drainage is to be simulated, the von Neumann cawifi,; = K (hi 1)
has to be imposed, i.e. the hydraulic potential at the botibthe soil profile is supposed
to be nearly constant¢/0z = 0 atz = z,) and the out-flow is only driven by gravitation.
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This assumption is valid for groundwater tables far beloevdbpth of the lower end of the
considered soil profile.

Case b)is given by prescribing the value of the matric potentialheg bottom of the soil
profiles as a function of time, it represents the typical éilét condition, whereas for the
case of zero flux at the bottom tase c)the lower boundary is given by the typical von
Neumann conditiom,; = 0.

Case d)is the lower boundary condition to describe the out-flow framgsimeter. This is
a particular case, which is given as a combination of eithesgribing the matric head or
the water flux at the bottom of the lysimeter. Lysimetersmottiave a drainage system or
an outlet at the bottom, such that water can drain only if thigoln layer is saturated or
has a lower matric potential than that of the suction drarggtem. In this case the matric
potential at the outlet boundary is set to zero (Dirichlatdition), and during each time step
it is checked whether the flux through the bottom is still dieel downward (positive). If
this is not anymore the case, the lower boundary conditi@hasmged into a von Neumann
condition with zero flux, i.e.qp,: = 0. This condition will be kept as long as the matric
potential is negative or below that of the drainage systemgbh and Wagenet, 1992).

In case e)the daily groundwater tables have to be known, such that teicrpotential
ki [mm] at the lower boundary (for knot at time ) can be prescribed by the following
von Neumann condition:

B, = zn— 25+ -5 (152)

wherez, is equal to the depth [mm] of the soil profile and:, [mm| denotes the depth
of the groundwater table. If this boundary condition is @mghen it is assumed that the
groundwater table is within or only slightly below the catesied soil profile.

For case f)the daily water flow through the lower boundary of the soilfiechas to be
given. In this case the daily flux is prescribed by a von Neumzondition for the lower
boundary and the model simulates a constant flux throughatterb layer of the soil profile
for the whole day.

1.4.4.5 Tridiagonal Equation System and LU-decomposition By the discretisation of
the Richards equations one obtains for each single distinetestept’ (1 < j < m) of
the simulation time an equation system for the unknowjmt the discrete spatial steps
z;i (1 <i < n), that represent the numerical layers of the soil profile usdesideration.
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Using the abbreviations

i—1
1 Kz‘]—l/Q
. 153
“ 2 (Az)? (153)
b LK H K el 154
' 2 (Az)? At (154)
j—1
1 Kz‘]+1/2
o= L 155
¢ 2 (Az)? (159)
- oIz (kL -k
(YL S G Y E S “/QA 22 gi-l (156)
Z b

At

results fori = 2,...,n — 1 the following equation system for the unknowts ,, h?, h/.

a; hg—l + b; hi + ¢ h’z"—I—l = d; (157)

From the boundary conditions corresponding equations Heru:nknownsh{,h% resp.
ki, h?_, are obtained:

bihl + ethl = di (158)

anhl | + bhd = d, (159)

Overall, an equation system results that is given (in matdtation) byA h/ = d with
tridiagonal matrixA.:

by ¢4 0 - . 0 hjl‘ dy
ag by ¢ : h dy
0 as bg C3 _ ' (160)
0 :
0 Ap—1 bn—l Cn—1 )
0 -+ -+ 0 a, b, hl, dy,

As a tridiagonal matrix, the matriA can be decomposed into a tridiagonal lower triangular
matrix L and a normalised bidiagonal upper triangular matlix(Remson et al., 1971;
Engelen-Mullges and Uhlig, 1996; Schwarz, 1986)

ap 0 -+ oo 0 1 B 0 - 0
as Qo . : 0 1 pBy
A=LU=| 0 g4 a3 "~ P (161)
0 : o Bag
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if a; = 0 is true for alli. By calculating the produdt U and comparing the corresponding

entries with that of matriA the following relations for; andg; (i = 1,...,n) result:
(05} = b1
Bi = ci/oy (162)
a = bi—afi-1 (i=2,...,n)

The decomposition of the matrix serves to determine thetisalwf the equation system
by transformingAh’ = d into the equivalent systefh’/ = g. At first, the vectorg is
calculated fromd = Lg (forward elimination):

g = di/o, (163)
g = (di—aigi-1)/oi (i=2,...,n) (164)

After this, equatiolUh’ = g is solved (backward elimination):

W= g, (165)

1.4.4.6 Picard Iteration Because generally both the elements of the main diagonal
b; and the elementd; of the right hand side of equation (160) depend 0@%?1/2 =
L[C(hl) 4+ C(h]~")] nonlinear on the unknowrig, the discretised Richards equation rep-
resents a nonlinear equation system. Its solution can b@@ppated by using a fixpoint-
iteration, the so-called Picard iteration, if sufficiensipall time steps are chosen (Schwarz,
1986). For that purpose the valulej\'s’1 at time step/~! are inserted as starting values for
the first iteration ste?” := hJ~" into A and with these inserted values the then linear
tridiagonal equation system

A7t =d (167)

is solved by means of the LU-decomposition. By repeatedtioseand solution of each in
this way linear equation system
AVFpIRHL — g (168)

a seriegh?*);, results, that is stopped, if the convergence criterion
Cg—l /2,k
(esat - eres)

is met for alll < ¢ < n, or if a given maximal value fok, the maximal iteration number, is
surpassed. In case of convergence, e.g. for the iteragprt st [, finally as approximative
solution’? := h?" is obtained.

(hPFH — plky <1073 (169)
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If no convergence occurs, the iteration procedure is repeasing the first starting values
(b := hl~') again, but applying a smaller time step, that is calculdngd time step
control algorithm. If after repeated reduction of the tirtepghe iteration does not converge,
the solution procedure is cancelled and the model sendsesponding error message.

1.4.5 Another Solution of the Richards Equation (HYDRUS)

Based on the alternative procedures of the model HYDRUS (S&k et al., 1998) this
approach simulates soil water flow by numerically solving thixed form of the Richards
equation:

00 0 oh
a5 — g KW (52 = 1)] = Sult,zh) (170)
t, z timet [d] and depthe [mm)] (oriented towards the centre of earth)

h = h(t,z) matric potential or matric heddhm| (expressed imm water head)
6 =0(t,z) volumetric soil water contentnm?3 mm 3]

K(h) hydraulic conductivity as function df [mm d—!]

Sw(t,z,h)  sink term due to root water uptakem mm=1 d=!]

1.4.5.1 Finite Element Discretisation an often used alternative method of the finite
difference discretisation is the finite element method {&ofz, 1986), which indeed has
its particular advantages only for higher dimensional fgois and flow regions of com-
plex geometry. The method of finite elements typically agplonly to the spatial part of
the partial differential equation, whereas the time derresais still discretised using finite
differences. The basic idea of the finite element method (F&figinates from the calcu-
lus of variations (Courant and Hilbert, 1968), which is aggblto find extremal functions
of certain functionals. Often the search is for a minimurugabf an integral expression,
which represents the energy of a system. This so-calledygmeethod leads for the FEM-
discretisation to an integral expression defining a systeaguations, that finally has to be
solved by numerical methods (Schwarz, 1986).

In the model HYDRUS (van Genuchten, 1982; Simunek et al. 81 %9e finite element
method is applied according to the Galerkin method to dis@ethe one-dimensional
Richards equation. For this purpose the intef@al], that represents the considered soll
volume, is divided intar sub-intervalsz;, z;+1] (1 < ¢ < n), representing the finite ele-
mentsi. For each knot;, (1 <i < n + 1) the piecewise linear basis functign is intro-
duced, which is equal to 1 at knetand zero for all other knots. By this, every continuous,
piecewise linear functiorf(z) on the interval0, ¢] can be represented as a superposition of
basis functiong;, where the coefficients af; are given by the valueg(z;) of the function

f at knotz;. The piecewise linear approximatiﬂt, z) of the unknown = h(t, z) of the
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Richards equation (168) therefore can be expressed by ltheifag function:

n+1
h(t,z) = > hi(t) ¢i(z) (171)
i=1
whereh; (t) := h(t, z;) is defined for alll <i < n + 1.
The energy method from the calculus of variations leads édaiowing condition of or-
thogonality for each of the + 1 basis functiong;, i.e. to the requirement that the following
integrals vanish on the entire solution dom&in= [0, /] :

/{ )(%—Z—l)]+5w}¢idz:0 , forall 1<i<n+4+1. (172)

To evaluate these integral equations first integration loispsiapplied leading to:

o0 ~ Oh
a%dz:K(h)(g—l) 0%

_h do;
= GG 0 G Suoyaz . @73

forall1 <i < n+ 1, wheredf) denotes the boundary of the doméin

This transformation of the integral equations permits tdide the flux-type boundary con-
dition (von Neumann condition) in a simple way, since the tesm of the right hand side
is the water flux across the (upper and lower) boundary, andeheere only the prescribed
values given by the flux-type boundary condition have to Isefied. Furthermore, using
the integration by parts avoids the otherwise arising sea®rivative, and it suffices as
assumed to use basis functions that are only one-timesyisxdifferentiable.

The insertion otZ"Jrl hi ¢i, which defines the piecewise linear approxmaﬂoieads to

n+1
do; do;
gbzdz—l—z h; /Kdz T dz =g .

+ / k%, / Swoi dz (174)
Q dz Q

forall1 <i < n+ 1, whereg, denotes the water flux across the boundary.

Since the basis functiong; are in each case at most on two finite elements different
from zero, it is advantageous to accomplish the integraél@ment wise per element
Qe = [2es Zet1], 1 < e <

= de; do;
Z/ ¢Zdz+2h2/ Kdz dzjd
do; |
an+;/98Kdz dz—zf;/geswgbzdz , (175)

where the summatioh’, needs to be carried out only for those eleméntsthat include
the knotz;.

= —quw ¢z



1.4 Darcy-Buckingham Model 53

To further evaluate the integrals (175) for the term withetiderivative the following ap-
proximation, also denoted as 'mass lumping’, is taken asitiefa forall1 < i < n +1
(van Genuchten, 1982):

de; 00

Additionally it is assumed, that the hydraulic conductivik’ and also the sink terny,,
are continuous, piecewise linear functions@n= [0, ¢], i.e. can be represented similar
to the functionk by basis functionsy; (1 < i < n + 1), with K;(t) = K(t, %), and
S;i(t) = S(t, z;) representing the values at the knpt

n+1

K(t,z) = Z Ki(t) ¢i(2) 177)
n+1

Sw(tvz) = Z Swz z (178)

Using these definitions, finally the integrals can be exiicalculated and, for example
for a equidistant decomposition ©6f into the finite element§), each of equal length z,
the following equation system (in matrix notation) results

dd

B— +Ah=4d 179
T (179)

for the vectors?, h andd as well as for the matrices andB, where (van Genuchten, 1982)

1401 do as d¢zd¢
I S St

ek e—1

—(Ki—l + KZ)/(QAZ), fori—1=3
(Ki_1 +2K; + K;1)/(2A2) fori=j (180)

—(K; + Ki11)/(2Az) fori+1=j

0 for i — k| > 1
(AR Az fori=j

B;: 51/ . d 5 Ae_{ 181
’ Z] vide = Zj?z 0 fori#j (181

av; b _ [0 - g
il = ( o ot bi dz)/(/Q ¢i dz) mass lumping (182)
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di == ¢i—9gi—5 (183)

¢ _qtop fOI’ Z; = 0
=<0 for0 <z </ (184)
Qot  for z; =/

G = —Qu P
0

d@ & doi 1
9i = _Z dz = Z/ Z Kjbj~ dz = —5(Ki-1 — Ki1) (185)
¢ j=e—1
i+1
S = Z/ Sw(bz dz = Z/ Z Sw j¢]¢2 dz =
€ j=e—1
A
= (St + 45+ Suir1) (186)

isvalid foralll <7 <n + 1.

Together with the equations for the boundary conditionssaesy of ordinary differential
eguations with nonlinear time-dependent coefficientsltgstinat defines a dynamical sys-
tem. The discretisation with respect to time necessary farmaerical solution is obtained
by a fully implicit finite difference approach ('backward Eu)
9 — 9i—1
B AL
for the time stepA ¢ between the time§ —! and¢’/. Equation (187) represents the now dis-
cretised, mixed form of the Richards equation, which finhtg to be solved by numerical

+ Aln = &/ (187)

procedures.

Remark: The Richards equation degenerates from a parabolic toiptiepartial differ-
ential equation if the change from unsaturated to saturededitions is described, since in
this case the term with time derivative vanishes. To guamrthat the discretised form of
the Richards equation is still valid in this case, it has t@bsured, that also the discretised
form of the spatial part of the differential equation vaeistfHornung and Messing, 1984),
i.e. that we have for each< 7 < n:

(191‘ _ ﬁj—l)i Co .
If — Q- 0, thenalso (A’ h’); — (d’);= 0 (188)
This is only fulfilled by the fully implicit discretisationTherefore, in the case of a non fully
implicit numerical solution procedure as given by the Crli&olson scheme of the model

LEACHN, reaching of complete saturatién= 6,,; is not admitted.
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1.4.5.2 Initial Condition As for the solver of the Richards equation of the model
LEACHN, at simulation start the initial vertical distribah of the matric head in the soll
profile is needed as input, see eq. (147):

h(t,z) = ho(z) for t=1gy |, (189)

whereh, denotes the needed vertical input distribution given astfan of z andi is the
starting time of the simulation. Usually the vertical distition of the volumetric water con-
tents in the soil profile will be given as start values and theesponding matric potentials
then are determined by applying the chosen water retentiores.

1.4.5.3 Upper boundary condition Generally in the model HYDRUS for water flow
simulations as upper boundary condition both a pure Digicbdndition:

h(t,z) = hip(t) atthe soil surfacez =0 |, (190)

and also a pure von Neumann condition:
oh

quw(t,z) = —K(az

1) = qip(t) atthe soil surfacez =0 (191)

can be used.

Additionally also a system dependent upper boundary carmbgen, which is determined
by the prevailing atmospheric interface conditions betwseil and air. This boundary
condition corresponds to the boundary condition for theewfiow model according to
LEACHN as given by equation (148).

Case a) If the infiltration capacity of the soil is exhausted afteoag precipitation events,
water builds up at the soil surface, that can flow as run off ay nest as ponding water only
very slowly infiltrating into the soil. In this case the bowmg condition can be realized by
the following 'surface reservoir condition’ (Simunek et,dl998):

qu(t,z) = —K(%—l) = Gop(t) — % at the soil surfacez =0 (192)

where the height of the surface water layer of the pondingmiatequal to the positive
matric potential = h(0,t) [mm] at the soil surface. The height of the surface water layer
can increase due to precipitation or can reduce due to eatignoiand infiltration, described
by the fluxg;,, = N —EV denoting the difference between precipitati¥rand evaporation
EV.

Case b) In case of unlimited infiltration or evaporation a Neumaondition is applied.
Case c) If after strong and long lasting evaporation and possitd@dpiration the soil
desiccates and a lower matric potential limit, is reached, then evaporation will be limited
namely by prescribing the limit value with a Dirichtlet catioh.
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1.4.5.4 Lower Boundary Condition Also for the lower boundary condition both a pure
Dirichlet condition:

h(t,z) = hpe(t) atlower end of profilez =7¢ | (193)

and a pure von Neumann condition:

quw(t,z) = —K(% —1) = qpet(t) atlower end of profilez =¢ , (194)

can be applied.

Additionally system dependent conditions can be chosethélower boundary:
a) free drainage,
b) lysimeter out-flow and

¢) drain discharge as a function of groundwater table.

In case a}he condition

@
0z

is prescribed, such that the Neumann conditiap,; = K can be inserted.

= 0 atlower end of profile z =1/ (195)

In case b)the out-flow from a lysimeter or a laboratory soil column ischébed, where the
bottom of the soil profile is at free air. Under these condgiarainage occurs, if the soll
column is saturated directly above the bottom (Dirichlatditon). However, if the matric

potential at the bottom of the soil profile gets negative asdoag as it stays negative,
no water leaves through the bottom and a zero flux boundargitimm (von Neumann

condition) applies.

For case c)a special relation between groundwater table and draintie &#ottom of the
soil profile can be used:
Qvot(h) = Crexp(Ca [h — £]) (196)

whereh [mm/| denotes the matric potential at the lower boundary ¢ andCy, Cs are
given input constants (von Neumann condition).
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1.4.5.5 Newton-Picard Iteration The mixed form of the Richards equation and its ap-
propriate discretisation by equation (187) implicitly gaatees a coherent water balance.
l.e., the calculated water content change of the soil prbéltgveen the time steps—! and

tJ corresponds just the amount of water that entered or lefisadhe boundary of the soil
profile or was exchanged by the sink term. This property istilesd by the nonlinear equa-
tion system (187) and has to be conserved during the itarptimcedure for the linearisation
and solution of the nonlinear equations. Therefore, duttiegiteration the state variabfe

is substituted by a truncated Taylor expansion albrgound the expansion poihf”“ , and

a mass conserving linearisation is obtained (Hornung anskivlg, 1984; Celia et al., 1990;
Vogel et al., 1996):

, A do; 7 A , A
o =t (T B OB = nER))
~ 0F 4+ OPF (R —nhy (197)

wherek+1 andk denote the actual and preceding iteration stepscﬁﬁd: (do /dh)(h{ ok )
the differential water capacity at knoat iteration stek.

By carrying out the fixpoint iteration according to Picard e#ain an iteration procedure,
that represents with respect to the nonlinearit§ (&f) the Newton iteration, but with respect
to the other nonlinear dependencies the Picard iteratiorerdd the following system of
linear recursion equations results:

,lgj,k: + Cj,k: (hj,k:—I—l _ hj,k:) o 19]‘—1
At

+ AJpih = @i (198)
where the matriXC is defined as a diagonal matrix 6% ; = co*,

2

Rearranging and summarising the terms finally leads to therfimg equation system

Bk piktl — gk (199)
mit E* .= BCI/AL + AI (200)
und 9% = (B CHF/AL) MR — (B/At) [99F — 9] + d (201)

The equation system (199) is tri-diagonal, because of theriion of the matric potential
valuesh{”€ it is also linear and hence can be directly solved during éachtion step by
applying the LU-decomposition.
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Explicitly we have forl < i < n + 1:

" 1 n "
Bl = TS (K% + K)7) (202)
gk 1 jik ik | ik | DZ ik
E; = oAz (K20 + 2K + K3 + At C; (203)
Ei],iJrl = oL (K" + K1) (204)
ik Az ik gik L1 ik gk Az i i-1 | qj-1
7= g O g (KD = K) — = (S +457 +5i)  (209)
Az | ik i1
+ AL 0" —ol7") ,
for: = 1;
7 1 ¥ ey, Dz ik
E{,l = 5AZ (K{ + K% )+ At C{ (206)
. 1 . .
By = g (BT (207)
Jk Az ik ik Lo ik ik AZ o1 gt
] - Ecl R +§(K1 + K3 )_?(251 +557) (208)
Az in - .
+ Kt (‘9{7 - 9{ ) - qgop ’
and fori =n + 1;
o 1 ik &
BN, = AL (K3 + K)Y) (209)
ik 1 : ik AZ ik
Ei+1,n+1 = SA (K7F + K0+ At Chiy (210)
k k k , k - -1
e = AL Chiy Wy + 3 (K3F+ K27 )) — r (S57'+28771)  (211)
Az o - .
N 0751 —0)11) + oy

In the same way as for the Picard iteration we obtain alsohemMtewton-Picard iteration
by repeated insertion and solving of the equations (199)iassgh/*), that is truncated,
if the convergence criterion (Huang et al., 1996)

075 — 07F| = |(90/0R)I* (WA — RIF)| < 0,0001 (212)

is met for alll < ¢ < n + 1 orif the maximal number of permitted iterations is reached.
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1.4.6 Actual Evapotranspiration (limitation of the potential rate)

To estimate the actual evaporation per time sEjg~![mm] the potential evaporation
rate per time stepEVpAt/At [mm d~'] is compared to the maximal possible water flow
@maz [mm d~1] out of the uppermost soil layer (across the soil surface théoatmo-
sphere). gmnq: IS calculated using Darcy's law using the hydraulic condhitgt K; =
K(hy) [mm d=1] of the top soil layer and the gradient between matric patéti the
uppermost layeh; = h(f;) [